Biotechnology Letters

, 33:2141 | Cite as

Bio-oxidation of H2S by Sulfolobus metallicus

  • Marjorie Morales
  • Jonathan Arancibia
  • Mariana Lemus
  • Javier Silva
  • Juan Carlos Gentina
  • German ArocaEmail author
Original Research Paper


Sulfolobus metallicus is a hyperthermophilic and chemolithoautotrophic archaeon that uses elemental sulfur as an energy source. Its ability to oxidize H2S was measured either in the presence or absence of elemental sulphur, showing its ability for using both as an energy source. A biotrickling filter was set up and a biofilm of S. metallicus was established over the support. The maximum removal capacity of the biotrickling filter reached at 55°C was 40 g S/m3h for input loads higher than 70 g S/m3h. Thus, S. metallicus can be used in a biofiltration system for the treatment of waste gas emissions at high temperatures contaminated with H2S.


Biofiltration Biotrickling filter H2Sulfolobus metallicus 



This research was financed by CONICYT, Project FONDECYT 1080422, and the Pontificia Universidad Católica de Valparaíso Project DII 203.777.


  1. Clark DA, Norris PR (1996) Oxidation of mineral sulphides by thermophilic microorganisms. Miner Eng 9(11):1119–1125CrossRefGoogle Scholar
  2. Clescerl LS, Greenberg AE and Eaton AD (1989) Standards Methods for Examination of water and wastewater. APHA/AWWA/WPCF. Association APH, editorGoogle Scholar
  3. Cox HHJ, Sexton T, Shareefdeen ZM, Deshusses MA (2001) Thermophilic biotrickling filtration of ethanol vapors. Environ Sci Technol 35:2612–2619PubMedCrossRefGoogle Scholar
  4. Dhamwichukorn S, Kleinheinz GT, Bagley ST (2001) Thermophilic biofiltration of methanol and alpha-pinene. J Ind Microbiol Bio 26:127–133CrossRefGoogle Scholar
  5. Friedrich C, Rother D, Bardischewsky F, Quentmeier A, Fischer J (2001) Oxidation of reduced inorganic sulfur compounds by bacteria: emergence of a common mechanism. Appl Environ Microbiol 17:2873–2882CrossRefGoogle Scholar
  6. Huber G, Stetter KO (1991) Sulfolobus metallicus, sp. nov., a novel strictly chemolithoautotrophic thermophilic archaeal species of metal-mobilizers. Syst Appl Microbiol 14:372–378Google Scholar
  7. Indrani D, Fulthorpe R, Sharma S, Grant D (2007) High-temperature biotrickling filtration of hydrogen sulphide. Appl Microb Biotechnol 74:708–716CrossRefGoogle Scholar
  8. Janssen A, Sleyster R, Van Der Kaa C, Jochemsen A, Bontsema J, Lettinga G (1995) Biological sulphide oxidation in a fed-batch reactor. Biotechnol Bioeng 47:327–333PubMedCrossRefGoogle Scholar
  9. Kennes C, Thallasso F (1998) Waste gas treatment technology. J Chem Technol Biotechnol 72:303–319CrossRefGoogle Scholar
  10. Kong Z, Farhana L, Fulthorpe RR, Allen DG (2001) Treatment of volatile organic compounds in a biotrickling filter under thermophilic conditions. Environ Sci Technol 35(21):4347–4352PubMedCrossRefGoogle Scholar
  11. Lomans BP, Van Der Drift C, Pol A, Op de Camp HJM (2002) Microbial cycling of volatile organic sulfur compounds. Cell Mol Life Sci 59:575–588PubMedCrossRefGoogle Scholar
  12. Luvsanjamba M, Sercu B, Kertész S, Van Langenhove H (2007) Thermophilic biotrickling filtration of a mixture of isobutyraldehyde and 2-pentanone. J Chem Technol Biotechnol 82:74–80CrossRefGoogle Scholar
  13. Matteau Y, Ramsay B (1999) Thermophilic toluene biofiltration. J Air Waste Manage 49:350–354Google Scholar
  14. Oyarzún P, Arancibia F, Canales C, Aroca G (2003) Biofiltration on hydrogen sulphide using Thiobacillus thioparus. Proc Biochem 39:165–170CrossRefGoogle Scholar
  15. Ruokojarvi A, Ruuskanen J, Martikainen PJ, Olkkonen M (2001) Oxidation of gas mixtures containing dimethyl sulfide, hydrogen sulfide, and methanethiol using a two-stage biotrickling filter. J Air Waste Manage 51(1):11–16Google Scholar
  16. Smet E, Lens P, Van Langenhove H (1998) Treatment of waste gases contaminated with odorous sulfur compounds. Crit Rev Env Sci Tec 28:89–117CrossRefGoogle Scholar
  17. Takeuchi K, Fujioka Y, Hirowatari K, Kusaba S and Suzuki H (2000) Scale prevention method by pH modification using advanced bioreactor. Proceedings World Geothermal Congress. Kyushu-Tohoku, Japan, May 28–June 10Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Marjorie Morales
    • 1
  • Jonathan Arancibia
    • 1
  • Mariana Lemus
    • 1
  • Javier Silva
    • 1
  • Juan Carlos Gentina
    • 1
  • German Aroca
    • 1
    Email author
  1. 1.School of Biochemical EngineeringPontificia Universidad Católica de ValparaísoValparaísoChile

Personalised recommendations