Biotechnology Letters

, 33:2225 | Cite as

Over-expression of chloroperoxidase in Caldariomyces fumago

  • Markus Buchhaupt
  • Kristina Ehrich
  • Sonja Hüttmann
  • Jan Guder
  • Jens Schrader
Original Research Paper

Abstract

The filamentous fungus Caldariomyces fumago secretes a chloroperoxidase (CPO). To increase its production, we integrated a CPO-expression cassette into the non-transcribed spacer regions of the rDNA in C. fumago. One strain was obtained that had twice the CPO activity when grown in shake-flask and bioreactor compared to the wild-type. The highest CPO activity from the bioreactor cultivation was 3,236 U ml−1. This is the highest value reported so far.

Keywords

Caldariomyces fumago Chloroperoxidase (CPO) Filamentous fungus Over-expression 

References

  1. Blanke SR, Yi S, Hager LP (1989) Development of semi-continuous and continuous flow bioreactors for the high level production of chloroperoxidase. Biotechnol Lett 11(11):769–774CrossRefGoogle Scholar
  2. Carmichael RD, Pickard MA (1989) Continuous and batch production of chloroperoxidase by mycelial pellets of Caldariomyces fumago in an airlift fermentor. Appl Environ Microbiol 55(1):17–20PubMedGoogle Scholar
  3. Carmichael RD, Jones A, Pickard MA (1986) Semicontinuous and continuous production of chloroperoxidase by Caldariomyces fumago immobilized in κ-carrageenan. Appl Environ Microbiol 51(2):276–280PubMedGoogle Scholar
  4. Cubero B, Scazzocchio C (1994) Two different, adjacent and divergent zinc finger binding sites are necessary for CREA-mediated carbon catabolite repression in the proline gene cluster of Aspergillus nidulans. EMBO J 13(2):407–415PubMedGoogle Scholar
  5. Kaup BA, Ehrich K, Pescheck M, Schrader J (2008) Microparticle-enhanced cultivation of filamentous microorganisms: increased chloroperoxidase formation by Caldariomyces fumago as an example. Biotechnol Bioeng 99(3):491–498PubMedCrossRefGoogle Scholar
  6. Lopes TS, Klootwijk J, Veenstra AE, van der Aar PC, van Heerikhuizen H, Raué HA, Planta RJ (1989) High-copy-number integration into the ribosomal DNA of Saccharomyces cerevisiae: a new vector for high-level expression. Gene 79(2):199–206PubMedCrossRefGoogle Scholar
  7. Morris DR, Hager LP (1966) Chloroperoxidase. I. Isolation and properties of the crystalline glycoprotein. J Biol Chem 241(8):1763–1768PubMedGoogle Scholar
  8. Nuell MJ, Fang GH, Axley MJ, Kenigsberg P, Hager LP (1988) Isolation and nucleotide sequence of the chloroperoxidase gene from Caldariomyces fumago. J Bacteriol 170(2):1007–1011PubMedGoogle Scholar
  9. Pickard MA (1981) A defined growth medium for the production of chloroperoxidase by Caldariomyces fumago. Can J Microbiol 27(12):1298–1305PubMedCrossRefGoogle Scholar
  10. Pickard MA, Kadima TA, Carmichael RD (1991) Chloroperoxidase, a peroxidase with potential. J Ind Microbiol Biotechnol 7(4):235–241Google Scholar
  11. Rai GP, Zong Q, Hager LP (2000) Isolation of directed evolution mutants of chloroperoxidase resistant to suicide inactivation by primary olefins. Isr J Chem 40(1):63–70CrossRefGoogle Scholar
  12. Rai GP, Sakai S, Flórez Alvaro M, Mogollon L, Hager Lowell P (2001) Directed evolution of chloroperoxidase for improved epoxidation and chlorination catalysis. Adv Synth Catal 343(6–7):638–645CrossRefGoogle Scholar
  13. Read JD, Colussi PA, Ganatra MB, Taron CH (2007) Acetamide selection of Kluyveromyces lactis cells transformed with an integrative vector leads to high-frequency formation of multicopy strains. Appl Environ Microbiol 73(16):5088–5096PubMedCrossRefGoogle Scholar
  14. Ronne H (1995) Glucose repression in fungi. Trends Genet 11(1):12–17PubMedCrossRefGoogle Scholar
  15. Staben C, Jensen B, Singer M, Pollock J, Schechtman M, Kinsey J, Selker E (1989) Use of a bacterial hygromycin B resistance gene as a dominant selectable marker in Neurospora crassa transformation. Fungal Genet Newsl 36:79–81Google Scholar
  16. van de Velde F, Bakker M, van Rantwijk F, Rai GP, Hager LP, Sheldon RA (2001) Engineering chloroperoxidase for activity and stability. J Mol Catal B Enzym 11(4–6):765–769CrossRefGoogle Scholar
  17. Verdoes JC, Punt PJ, Hondel CAMJJ (1995) Molecular genetic strain improvement for the overproduction of fungal proteins by filamentous fungi. Appl Microbiol Biotechnol 43(2):195–205CrossRefGoogle Scholar
  18. Vilgalys R, Hester M (1990) Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. J Bacteriol 172(8):4238–4246PubMedGoogle Scholar
  19. White TJ, Bruns T, Lee S, Taylor JW (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, Inc., New York, pp 315–322Google Scholar
  20. Yazbik V, Ansorge-Schumacher M (2010) Fast and efficient purification of chloroperoxidase from C. fumago. Process Biochem 45(2):279–283CrossRefGoogle Scholar
  21. Yi X, Mroczko M, Manoj KM, Wang X, Hager LP (1999) Replacement of the proximal heme thiolate ligand in chloroperoxidase with a histidine residue. Proc Natl Acad Sci USA 96(22):12412–12417PubMedCrossRefGoogle Scholar
  22. Zong Q (1997) Expression of recombinant chloroperoxidase. PhD thesis, University of Illinois, Urbana-ChampaignGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Markus Buchhaupt
    • 1
  • Kristina Ehrich
    • 1
  • Sonja Hüttmann
    • 1
  • Jan Guder
    • 1
  • Jens Schrader
    • 1
  1. 1.DECHEMA e.V., Biochemical EngineeringFrankfurt am MainGermany

Personalised recommendations