Biotechnology Letters

, 33:2127

Discovery and characterization of a xylose reductase from Zymomonas mobilis ZM4

Original Research Paper

Abstract

Formation of xylitol, a byproduct from xylose fermentation, is a major limiting factor in ethanol production from xylose in engineered Zymomonas strains, yet the postulated xylose reductase remains elusive. We report here the discovery of xylose reductase in Zymomonas mobilis and, for the first time, to associate the enzyme function with its gene. Besides xylose and xylulose, the enzyme was active towards benzaldehyde, furfural, 5-hydroxymethyl furfural, and acetaldehyde, exhibiting nearly 150-times higher affinity with benzaldehyde than xylose. The discovery of xylose reductase paves the way for further improvement of xylose fermentation in Z. mobilis. The enzyme may also be used to mitigate toxicity of furfural and other inhibitors from plant biomass.

Keywords

Cellulosic ethanol Xylitol Xylose fermentation Xylose reductase Zymomonas mobilis 

Supplementary material

10529_2011_677_MOESM1_ESM.docx (70 kb)
Supplementary material 1 (DOCX 70 kb)

References

  1. Agrawal M, Mao Z, Chen RR (2010) Adaptation yields a highly efficient xylose-fermenting Zymomonas mobilis strain. Biotechnol Bioeng 108:777–785PubMedCrossRefGoogle Scholar
  2. Akinterinwa O, Cirino PC (2009) Heterologous expression of D-xylulokinase from Pichia stipitis enables high levels of xylitol production by engineered Escherichia coli growing on xylose. Metab Eng 11:48–55PubMedCrossRefGoogle Scholar
  3. Billard P, Ménart S, Fleer R, Bolotin-Fukuhara M (1995) Isolation and characterization of the gene encoding xylose reductase from Kluyveromyces lactis. Gene 162:93–97PubMedCrossRefGoogle Scholar
  4. Feldmann SD, Sahm H, Sprenger GA (1992) Pentose metabolism in Zymomonas mobilis wild-type and recombinant strains. Appl Microbiol Biotechnol 38:354–361CrossRefGoogle Scholar
  5. Gutierrez T, Ingram LO, Preston JF (2006) Purification and characterization of a furfural reductase (FFR) from Escherichia coli strain LYO1—an enzyme important in the detoxification of furfural during ethanol production. J Biotechnol 121:154–164PubMedCrossRefGoogle Scholar
  6. Handumrongkul C, Ma D, Silva J (1998) Cloning and expression of Candida guilliermondii xylose reductase gene (xyl1) in Pichia pastoris. Appl Microbiol Biotechnol 49:399–404PubMedCrossRefGoogle Scholar
  7. Jeffries T, Jin Y (2000) Ethanol and thermotolerance in the bioconversion of xylose by yeasts. Adv Appl Microbiol 47:222–268Google Scholar
  8. Kim IS, Barrow KD, Rogers PL (2000) Kinetic and nuclear magnetic resonance studies of xylose metabolism by recombinant Zymomonas mobilis ZM4(pZB5). Appl Environ Microbiol 66:186–193PubMedCrossRefGoogle Scholar
  9. Miller E, Turner P, Jarboe L, Ingram L (2010) Genetic changes that increase 5-hydroxymethyl furfural resistance in ethanol-producing Escherichia coli LY180. Biotechnol Lett 32:661–667PubMedCrossRefGoogle Scholar
  10. Muheim A, Waldner R, Sanglard D, Reiser J, Schoemaker HE, Leisola MSA (1991) Purification and properties of an aryl-alcohol dehydrogenase from the white-rot fungus Phanerochaete chrysosporium. Eur J Biochem 195:369–375PubMedCrossRefGoogle Scholar
  11. Panesar PS, Marwaha SS, Kennedy JF (2006) Zymomonas mobilis: an alternative ethanol producer. J Chem Technol Biotechnol 81:623–635CrossRefGoogle Scholar
  12. Prathumpai M, Visser J, Ruijter G (2005) Metabolic control analysis of Aspergillus niger L-arabinose catabolism. Biotechnol Prog 21:1610–1616PubMedCrossRefGoogle Scholar
  13. Seo J, Chong H, Park H et al (2004) The genome sequence of the ethanologenic bacterium Zymomonas mobilis ZM4. Nat Biotechnol 23:63–68PubMedCrossRefGoogle Scholar
  14. Swings J, De Ley J (1977) Biology of Zymomonas. Bacteriol Rev 41:1–46PubMedGoogle Scholar
  15. Viikari L, Korhola M (1986) Fructose metabolism in Zymomonas mobilis. Appl Microbiol Biotechnol 24:471–476CrossRefGoogle Scholar
  16. Viitanen P, McCutchen C, Chou Y, Zhang M (2008) Xylitol synthesis mutant of xylose-utilizing Zymomonas for ethanol production. WO Patent WO/2008/133,638Google Scholar
  17. Zachariou M, Scopes R (1986) Glucose-fructose oxidoreductase, a new enzyme isolated from Zymomonas mobilis that is responsible for sorbitol production. J Bacteriol 167:863–869PubMedGoogle Scholar
  18. Zhang M, Chou Y (2008) Stable Zymomonas mobilis xylose and arabinose fermenting strains. US Patent 7,354,755 B2Google Scholar
  19. Zhang M, Eddy C, Deanda K, Finkestein M, Picataggio S (1995) Metabolic engineering of a pentose metabolism pathway in ethanologenic Zymomonas mobilis. Science 267:240–243PubMedCrossRefGoogle Scholar
  20. Zhang XM, Chen GJ, Liu WF (2009) Reduction of xylose to xylitol catalyzed by glucose-fructose oxidoreductase from Zymomonas mobilis. FEMS Microbiol Lett 293:214–219PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.School of Chemical and Biomolecular EngineeringGeorgia Institute of TechnologyAtlantaUSA

Personalised recommendations