Biotechnology Letters

, Volume 33, Issue 8, pp 1593–1599

Identification of reference genes suitable for normalization of RT-qPCR expression data in Saccharomyces cerevisiae during alcoholic fermentation

  • Enrico Vaudano
  • Olta Noti
  • Antonella Costantini
  • Emilia Garcia-Moruno
Original Research Paper

Abstract

Expression data from RT-qPCR (reverse transcription quantitative PCR) needs to be normalized to account for experimental variability among samples caused by differential yields of the transcripts in RNA extraction or in the reverse transcription. The most common method is to normalize against one or more reference genes (RG). We have selected RGs suitable for normalization of RT-qPCR raw data in Saccharomyces cerevisiae during alcoholic fermentation. The RGs were evaluated by three different statistical methods. The suitability of the selected RG sets was compared with ACT1, a commonly used non-validated single RG, by normalizing the expression of two target genes. Expression profiles of the target genes revealed the risk of misleading interpretation of expression data due to an unreliable RG.

Keywords

RT-qPCR Saccharomyces cerevisiae Fermentation Expression 

Supplementary material

10529_2011_603_MOESM1_ESM.pdf (128 kb)
Supplementary material 1 (PDF 127 kb)

References

  1. Andersen CL, Jensen JL, Orntoft TF (2004) Normalisation of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalisation, applied to bladder and colon cancer data sets. Cancer Res 64:5245–5250PubMedCrossRefGoogle Scholar
  2. Bustin SA, Benes V, Nolan T, Pfaffl MW (2005) Quantitative real-time RT-PCR—a perspective. J Mol Endocrinol 34:597–601PubMedCrossRefGoogle Scholar
  3. Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL, Vandesompele J, Wittwer CT (2009) The MIQE Guidelines: minimum information for publication of Quantitative Real-Time PCR experiments. Clin Chem 55:611–622PubMedCrossRefGoogle Scholar
  4. De Kok JB, Roelofs RW, Giesendorf BA, Pennings JL, Waas ET, Feuth T, Swinkels DW, Span PN (2005) Normalization of gene expression measurements in tumor tissues: comparison of 13 endogenous control genes. Lab Investig 85:154–159PubMedGoogle Scholar
  5. Dean JD, Goodwin PH, Hsiang T (2002) Comparison of relative RT-PCR and Northern blot analyses to measure expression of β-1,3-glucanase in Nicotiana benthamiana infected with Colltotrichum destructivum. Plant Mol Biol Rep 20:347–356CrossRefGoogle Scholar
  6. Hugget J, Dheda K, Bustin S, Zumula A (2005) Real-time RT-PCR normalization; strategies and considerations. Genes Immun 6:279–284CrossRefGoogle Scholar
  7. Martinez MJ, Roy S, Archuletta AB, Wentzell PD, Anna-Arriola SS, Rodriguez AL, Aragon AD, Quinones GA, Allen C, Werner-Washburne M (2004) Genomic analysis of stationary-phase and exit in Saccharomyces cerevisiae: gene expression and identification of novel essential genes. Mol Biol Cell 15:5295–5305PubMedCrossRefGoogle Scholar
  8. Monje-Casas F, Michan C, Pueyo C (2004) Absolute transcript levels of thioredoxin- and glutathione-dependent redox systems in Saccharomyces cerevisiae: response to stress and modulation with growth. Biochem J 383:139–147PubMedCrossRefGoogle Scholar
  9. Pfaffl MW, Tichopad A, Prgomet C, Neuvians TP (2004) Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper—Excel-based tool using pair-wise correlations. Biotechnol Lett 26:509–515PubMedCrossRefGoogle Scholar
  10. Pigeau GM, Inglis DM (2007) Response of wine yeast (Saccharomyces cerevisiae) aldehyde dehydrogenase to acetaldehyde stress during ice wine fermentation. J Appl Microbiol 103:1576–1586PubMedCrossRefGoogle Scholar
  11. Rasmussen R (2001) Quantification on the LightCycler. In: Meuer S, Wittwer C, Nakagawara K (eds) Rapid cycle real-time PCR, methods and applications. Springer Press, Heidelberg, pp 21–34Google Scholar
  12. Rossignol T, Dulau L, Julien A, Blondin B (2003) Genome-wide monitoring of wine yeast gene expression during alcoholic fermentation. Yeast 20:1369–1385PubMedCrossRefGoogle Scholar
  13. Schmittgen TD, Zakrajsek BA (2000) Effect of experimental treatment on housekeeping gene expression: validation by real-time, quantitative RT-PCR. J Biochem Biophys Methods 46:69–81PubMedCrossRefGoogle Scholar
  14. Stahlberg A, Elbing K, Andrade-Garda JM, Sjogreen B, Forootan A, Kubista M (2008) Multiway real-time PCR gene expression profilingin yeast Saccharomyces cerevisiae reveals altered transcriptional response of ADH-genes to glucose stimuli. BMC Genomics. doi:1010.1186/1471-2164-9-170
  15. Teste MA, Duquenne M, Francois JM, Parrou JL (2009) Validation of reference genes for quantitative expression analysis by real-time RT-PCR in Saccharomyces cerevisiae. BMC Mol Biol. doi:10.1186/1471-2199-10-99
  16. Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 3:Research 0034.1-0034.11Google Scholar
  17. Vaudano E, Costantini A, Del Prete V, Cersosimo M, Garcia-Moruno E (2009) Application of real-time RT-PCR to study gene expression in active dry yeast (ADY) during the rehydration phase. Int J Food Microbiol 129:30–36PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Enrico Vaudano
    • 1
  • Olta Noti
    • 1
  • Antonella Costantini
    • 1
  • Emilia Garcia-Moruno
    • 1
  1. 1.CRA-Centro di Ricerca per l’EnologiaAstiItaly

Personalised recommendations