Biotechnology Letters

, Volume 33, Issue 4, pp 705–714 | Cite as

Performance of microbial fuel cell with volatile fatty acids from food wastes

Original Research Paper

Abstract

Food wastes were used as feedstock for the direct production of electricity in a microbial fuel cell (MFC). MFC operations with volatile fatty acids (VFA) produced 533 mV with a maximum power density of 240 mW/m2. Short-chain VFAs, such as acetate, were degraded more rapidly and thus supported higher power generation than longer chain ones. In general, the co-existence of other, different VFAs slowed the removal of each VFA, which indicated that anodic microbes were competing for different substrates. 16S rRNA gene analysis using PCR-DGGE indicated that the MFC operation with VFAs had enriched unique microbial species.

Keywords

Food waste Microbial fuel cell Ostrich dung inoculum Volatile fatty acid 

References

  1. Aelterman P, Versichele M, Marzorati M, Boon N, Verstraete W (2008) Loading rate and external resistance control the electricity generation of microbial fuel cells with different three-dimensional anodes. Bioresour Technol 99(18):8895–8902PubMedCrossRefGoogle Scholar
  2. Ahn Y, Park EJ, Oh YK, Park S, Webster G, Weightman AJ (2005) Biofilm microbial community of a thermophilic trickling biofilter used for continuous biohydrogen production. FEMS Microbiol Lett 249(1):31–38PubMedCrossRefGoogle Scholar
  3. Aiello-Mazzarri C, Agbogbo FK, Holtzapple MT (2006) Conversion of municipal solid waste to carboxylic acids using a mixed culture of mesophilic microorganisms. Bioresour Technol 97(1):47–56PubMedCrossRefGoogle Scholar
  4. Cao X, Huang X, Boon N, Liang P, Fan M (2008) Electricity generation by an enriched phototrophic consortium in a microbial fuel cell. Electrochem Commun 10(9):1392–1395CrossRefGoogle Scholar
  5. Chang HN, Lim SJ, Kwon SH, Lee WG, Choi DW (2002) Method for removal of nitrogen and phosphorus using fermentation liquor resulting from organic wastes with low nitrogen and phosphorus contents. US Patent 6,406,628Google Scholar
  6. Chang HN, Chang ST, Jung H-m, Kang JW, Jeong CM (2010a) Method for treating food waste of collective residence facilities. KR Patent 10-0946368Google Scholar
  7. Chang HN, Kim N-J, Kang J, Jeong CM (2010b) Biomass-derived volatile fatty acid platform for fuels and chemicals. Biotechnol Bioprocess Eng 15(1):1976–3816CrossRefGoogle Scholar
  8. Cheng S, Logan BE (2007) Ammonia treatment of carbon cloth anodes to enhance power generation of microbial fuel cells. Electrochem Commun 9(3):492–496CrossRefGoogle Scholar
  9. Choo YF, Lee J, Chang IS, Kim BH (2006) Bacterial communities in microbial fuel cells enriched with high concentrations of glucose and glutamate. J Microbiol Biotechnol 16(9):1481–1484Google Scholar
  10. Freguia S, Teh EH, Boon N, Leung KM, Keller J, Rabaey K (2010) Microbial fuel cells operating on mixed fatty acids. Bioresour Technol 101(4):1233–1238PubMedCrossRefGoogle Scholar
  11. Jeong CM, Choi JDR, Ahn Y, Chang HN (2008) Removal of volatile fatty acids (VFA) by microbial fuel cell with aluminum electrode and microbial community identification with 16S rRNA sequence. Korean J Chem Eng 25(3):535–541CrossRefGoogle Scholar
  12. Kang JW, Jeong CM, Kim N-J, Kim MI, Chang HN (2010) On-site removal of H2S from biogas produced by food waste using an aerobic sludge biofilter for steam reforming processing. Biotechnol Bioprocess Eng 15(3):505–511CrossRefGoogle Scholar
  13. Kim BH, Park HS, Kim HJ, Kim GT, Chang IS, Lee J, Phung NT (2004) Enrichment of microbial community generating electricity using a fuel-cell-type electrochemical cell. Appl Microbiol Biotechnol 63(6):672–681PubMedCrossRefGoogle Scholar
  14. Lee TK, Doan TV, Yoo K, Choi S, Kim C, Park J (2010) Discovery of commonly existing anode biofilm microbes in two different wastewater treatment MFCs using FLX titanium pyrosequencing. Appl Microbiol Biotechnol 87(6):2335–2343PubMedCrossRefGoogle Scholar
  15. Li H, Kim N-J, Jiang M, Kang JW, Chang HN (2009) Simultaneous saccharification and fermentation of lignocellulosic residues pretreated with phosphoric acid acetone for bioethanol production. Bioresour Technol 100(13):3245–3251PubMedCrossRefGoogle Scholar
  16. Lim S-J, Choi DW, Lee WG, Kwon S, Chang HN (2000) Volatile fatty acids production from food wastes and its application to biological nutrient removal. Bioprocess Eng 22:543–545CrossRefGoogle Scholar
  17. Liu H, Cheng S, Logan BE (2005) Production of electricity from acetate or butyrate using a single-chamber microbial fuel cell. Environ Sci Technol 39(2):658–662PubMedCrossRefGoogle Scholar
  18. Logan BE, Regan JM (2006) Electricity-producing bacterial communities in microbial fuel cells. Trends Microbiol 14(12):512–518PubMedCrossRefGoogle Scholar
  19. Lovley DR (2006) Microbial fuel cells: novel microbial physiologies and engineering approaches. Curr Opin Biotechnol 17(3):327–332PubMedCrossRefGoogle Scholar
  20. Lovley DR, Phillips EJP (1988) Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese. Appl Environ Microbiol 54(6):1472–1480PubMedGoogle Scholar
  21. Lowy DA, Tender LM, Zeikus JG, Park DH, Lovley DR (2006) Harvesting energy from the marine sediment–water interface II. Kinetic activity of anode materials. Biosens Bioelectron 21(11):2058–2063PubMedCrossRefGoogle Scholar
  22. Min B, Kim J, Oh S, Regan JM, Logan BE (2005) Electricity generation from swine wastewater using microbial fuel cells. Water Res 39(20):4961–4968PubMedCrossRefGoogle Scholar
  23. Moon H, Chang IS, Kim BH (2006) Continuous electricity production from artificial wastewater using a mediator-less microbial fuel cell. Bioresour Technol 97(4):621–627PubMedCrossRefGoogle Scholar
  24. Morris JM, Jin S, Crimi B, Pruden A (2009) Microbial fuel cell in enhancing anaerobic biodegradation of diesel. Chem Eng J 146(2):161–167CrossRefGoogle Scholar
  25. Muyzer G, De-Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59(3):695–700PubMedGoogle Scholar
  26. Niessen J, Harnisch F, Rosenbaum M, Schröder U, Scholz F (2006) Heat treated soil as convenient and versatile source of bacterial communities for microbial electricity generation. Electrochem Commun 8(5):869–873CrossRefGoogle Scholar
  27. Oh S, Logan BE (2005) Hydrogen and electricity production from a food processing wastewater using fermentation and microbial fuel cell technologies. Water Res 39(19):4673–4682PubMedCrossRefGoogle Scholar
  28. Park DH, Zeikus JG (2003) Improved fuel cell and electrode designs for producing electricity from microbial degradation. Biotechnol Bioeng 81(3):348–355PubMedCrossRefGoogle Scholar
  29. Phung NT, Lee J, Kang KH, Chang IS, Gadd GM, Kim BH (2004) Analysis of microbial diversity in oligotrophic microbial fuel cells using 16S rRNA sequences. FEMS Microbiol Lett 233(1):77–82PubMedCrossRefGoogle Scholar
  30. Rabaey K, Clauwaert P, Aelterman P, Verstraete W (2005) Tubular microbial fuel cells for efficient electricity generation. Environ Sci Technol 39(20):8077–8082PubMedCrossRefGoogle Scholar
  31. Rismani-Yazdi H, Christy AD, Dehority BA, Morrison M, Yu Z, Tuovinen OH (2007) Electricity generation from cellulose by rumen microorganisms in microbial fuel cells. Biotechnol Bioeng 97(6):1398–1407PubMedCrossRefGoogle Scholar
  32. Rozendal RA, Hamelers HVM, Rabaey K, Keller J, Buisman CJN (2008) Towards practical implementation of bioelectrochemical wastewater treatment. Trends Biotechnol 26(8):450–459PubMedCrossRefGoogle Scholar
  33. Venkata Mohan S, Mohanakrishna G, Purushotham Reddy B, Saravanan R, Sarma PN (2008a) Bioelectricity generation from chemical wastewater treatment in mediatorless (anode) microbial fuel cell (MFC) using selectively enriched hydrogen producing mixed culture under acidophilic microenvironment. Biochem Eng J 39(1):121–130CrossRefGoogle Scholar
  34. Venkata Mohan S, Mohanakrishna G, Sarma PN (2008b) Effect of anodic metabolic function on bioelectricity generation and substrate degradation in single chambered microbial fuel cell. Environ Sci Technol 42(21):8088–8094PubMedCrossRefGoogle Scholar
  35. Venkata Mohan S, Veer Raghavulu S, Sarma PN (2008c) Biochemical evaluation of bioelectricity production process from anaerobic wastewater treatment in a single chambered microbial fuel cell (MFC) employing glass wool membrane. Biosens Bioelectron 23(9):1326–1332PubMedCrossRefGoogle Scholar
  36. Zhang L, Zhou S, Zhuang L, Li W, Zhang J, Lu N, Deng L (2008a) Microbial fuel cell based on Klebsiella pneumoniae biofilm. Electrochem Commun 10(10):1641–1643CrossRefGoogle Scholar
  37. Zhang T, Cui C, Chen S, Yang H, Shen P (2008b) The direct electrocatalysis of Escherichia coli through electroactivated excretion in microbial fuel cell. Electrochem Commun 10(2):293–297CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Department of Chemical and Biomolecular EngineeringKAISTDaejeonKorea
  2. 2.Department of Civil and Environmental EngineeringKAISTDaejeonKorea

Personalised recommendations