Advertisement

Biotechnology Letters

, Volume 33, Issue 2, pp 293–300 | Cite as

H2 synthesis from pentoses and biomass in Thermotoga spp.

  • Niels T. Eriksen
  • Martin Leegaard Riis
  • Nikolaj Kyndby Holm
  • Niels Iversen
Original Research Paper

Abstract

We have investigated H2 production on glucose, xylose, arabinose, and glycerol in Thermotoga maritima and T. neapolitana. Both species metabolised all sugars with hydrogen yields of 2.7–3.8 mol mol−1 sugar. Both pentoses were at least comparable to glucose with respect to their qualities as substrates for hydrogen production, while glycerol was not metabolised by either species. Glycerol was also not metabolised by T. elfii. We also demonstrated that T. neapolitana can use wet oxidised wheat straws, in which most sugars are stored in glycoside polymers, for growth and efficient hydrogen production, while glucose, xylose and arabinose are consumed in parallel.

Keywords

Arabinose Biohydrogen Thermotoga maritima Thermotoga neapolitana Xylose 

Notes

Acknowledgments

We thank Anne Belinda Thomsen, Risø DTU for supplying wet oxidised wheat straw.

References

  1. Bromaghim G, Gibeault K, Serfass J, Serfass P, Wagner E (2010) Hydrogen and fuel cells: the U.S. market report. A report by the National Hydrogen Association on 2008 dataGoogle Scholar
  2. Chhabra SR, Shockley KR, Conners SB, Scott KL, Wolfinger RD, Kelly RM (2003) Carbohydrate-induced differential gene expression patterns in the hyperthermophilic bacterium Thermotoga maritima. J Biol Chem 278:7540–7552CrossRefPubMedGoogle Scholar
  3. Conners SB, Mongodin EF, Johnson MR, Montero CI, Nelson KE, Kelly RM (2006) Microbial biochemistry, physiology, and biotechnology of hyperthermophilic Thermotoga species. FEMS Microbiol Rev 30:872–905CrossRefPubMedGoogle Scholar
  4. d’Ippolito G, Dipasquala L, Vella FM, Romano I, Gambacorta A, Fontana A (2010) Hydrogen metabolism in the extreme thermophile Thermotoga neapolitana. Int J Hydrog Energy 35:2290–2295CrossRefGoogle Scholar
  5. de Vrije T, Bakker RR, Budde MAW, Lai MH, Mars AE, Claassen PAM (2009) Efficient hydrogen production from the lignocellulosic energy crop Miscanthus by the extreme thermophilic bacteria Caldicellulosiruptor saccharolyticus and Thermotoga neapolitana. Biotechnol Biofuels 2:12CrossRefPubMedGoogle Scholar
  6. Eriksen NT, Nielsen TM, Iversen N (2008) Hydrogen production in anaerobic and microaerobic Thermotoga neapolitana. Biotechnol Lett 30:103–109CrossRefPubMedGoogle Scholar
  7. Fabiano B, Perego P (2002) Thermodynamic study and optimization of hydrogen production by Enterobacter aerogenes. Int J Hydrog Energy 27:149–156CrossRefGoogle Scholar
  8. Fardeau M-L, Ollivier B, Patel BK, Magot M, Thomas P, Rimbault A, Rocchiccioli F, Garcia J-L (1997) Thermotoga hypogea sp. nov., a xylanolytic, thermophilic bacterium from an oil-producing well. Int J Syst Bacteriol 47:1013–1019CrossRefPubMedGoogle Scholar
  9. Hamelinck CN, van Hooijdonk G, Faaij APC (2005) Ethanol from lignocellulosic biomass: techno-economic performance in short-, middle- and long-term. Biomass Bioenergy 28:384–410CrossRefGoogle Scholar
  10. Huber R, Langworthy TA, König H, Thomm M, Woese CR, Sleytr YB, Stetter KO (1986) Thermotoga maritima sp. nov. represents a new genus of unique extremely thermophilic eubacteria growing up to 90°C. Arch Microbiol 144:324–333CrossRefGoogle Scholar
  11. Kotay SM, Das D (2007) Microbial hydrogen production with Bacillus coagulans IIT-BT S1 isolated from anaerobic sewage sludge. Bioresour Technol 98:1183–1190CrossRefPubMedGoogle Scholar
  12. Lin CY, Chang R-C (2004) Fermentative hydrogen production at ambient temperature. Int J Hydrog Energy 29:715–720CrossRefGoogle Scholar
  13. Mars AE, Veuskens T, Budde MAW, van Doeveren PFNM, Lips SJ, Bakker RR, de Vrije T, Claassen PAM (2010) Biohydrogen production from untreated and hydrolyzed potato steam peels by the extreme thermophiles Caldicellulosiruptor saccharolyticus and Thermotoga neapolitana. Int J Hydrog Energy 35:7730–7737CrossRefGoogle Scholar
  14. Mizuno O, Dinsdale R, Hawkes FR, Hawkes DL, Noike T (2000) Enhancement of hydrogen production from glucose by nitrogen gas sparging. Bioresour Technol 73:59–65CrossRefGoogle Scholar
  15. Morimoto M, Atsuko M, Atif AAY, Ngan MA, Fakhru’l-Razi A, Iyuke SE, Bakir AM (2004) Biological production of hydrogen from glucose by natural anaerobic microflora. Int J Hydrog Energy 29:709–713CrossRefGoogle Scholar
  16. Munro SA, Zinder SH, Walker LP (2009) The fermentation stoichiometry of Thermotoga neapolitana and influence of temperature, oxygen, and pH on hydrogen production. Biotechnol Prog 25:1035–1042CrossRefPubMedGoogle Scholar
  17. Nelson KE, Clayton RA, Gill SR, Gwinn ML, Dodson RJ, Haft DH, Hickey EK, Peterson JD, Nelson WE, Ketchum KA, McDonald L, Utterback TR, Malek JA, Linher KD, Garett MM, Stewart AM, Cotton MD, Pratt MS, Phillips CA, Richardson D, Heidelberg J, Sutton GG, Fleischmann RD, Eisen JA, White O, Salzberg SL, Smith HO, Venter JC, Fraser CM (1999) Evidence for lateral gene transfer between archae and bacteria from genome sequence of Thermotoga maritima. Nature 399:323–329CrossRefPubMedGoogle Scholar
  18. Ngo TA, Kim K-R, Nguyen T-AD, Kim M-S, Sim S-J (2009) Fermentative hydrogen production from glycerol wastes of biodiesel manufacture by Thermotoga neapolitana. Proceedings of the 3rd international conference on fermentation technology for value added agricultural products, Khon Kaen, ThailandGoogle Scholar
  19. Oh Y-K, Seol E-H, Kim JR, Park S (2003) Fermentative biohydrogen production by a new chemoheterotrophic bacterium Citrobacter sp. Y19. Int J Hydrog Energy 28:1353–1359CrossRefGoogle Scholar
  20. Rachman MA, Nakashimada Y, Kakizono T, Nishio N (1998) Hydrogen production with high yield and high evolution rate by self-flocculated cells of Enterobacter aerogenes in a packed-bed reactor. Appl Microbiol Biotechnol 49:450–454CrossRefGoogle Scholar
  21. Schröder C, Selig M, Schönheit P (1994) Glucose fermentation to acetate, CO2 and H2 in the anaerobic hyperthermophilic eubacterium Thermotoga maritima; involvement of the Embden-Meyerhof pathway. Arch Microbiol 161:460–470Google Scholar
  22. Schut GJ, Adams MWW (2009) The iron-hydrogenase of Thermotoga maritima utilizes ferredoxin and NADH synergistically: a new perspective on anaerobic hydrogen production. J Bacteriol 191:4451–4457CrossRefPubMedGoogle Scholar
  23. Takahata Y, Nishijima M, Hoaki T, Maruyama T (2001) Thermotoga petrophila sp. nov. and Thermotoga naphtophila sp. nov., two hyperthermophilic bacteria from the Kubiki oil reservoir in Niigata, Japan. Int J Syst Evol Microbiol 51:1901–1909PubMedGoogle Scholar
  24. U.S. Department of Energy (2008) World biofuels production potential. Understanding the challenges to meeting the U.S. renewable fuel standard, 67 ppGoogle Scholar
  25. van Niel EWJ, Budde MAW, de Haas GG, van der Wal FJ, Claassen PAM, Stams AJM (2002) Distinctive properties of high hydrogen producing extreme thermophiles, Caldicellusiruptor saccharolyticus and Thermotoga elfii. Int J Hydrog Energy 27:1391–1398CrossRefGoogle Scholar
  26. Van Ooteghem SA, Beer SK, Yue PC (2002) Hydrogen production by the thermophilic bacterium Thermotoga neapolitana. Appl Biochem Biotechnol 98–100:177–189CrossRefPubMedGoogle Scholar
  27. Van Ooteghem SA, Jones A, van der Lelie D, Dong B, Mahajan D (2004) H2 production and carbon utilization by Thermotoga neapolitana under anaerobic and microaerobic growth conditions. Biotechnol Lett 26:1223–1232CrossRefPubMedGoogle Scholar
  28. Varga E, Szengyel Z, Reczey K (2002) Chemical pretreatments of corn stover for enhancing enzymatic digestibility. Appl Biochem Biotechnol 98–100:73–87CrossRefPubMedGoogle Scholar
  29. Vargas M, Noll KM (1996) Catabolite repression in the hyperthermophilic bacterium Thermotoga neapolitana is independent of cAMP. Microbiology 142:139–144CrossRefPubMedGoogle Scholar
  30. Verhaart MRA, Bielen AAM, van der Oost J, Stams AJM, Kengen SWM (2010) Hydrogen production by hyperthermophilic and extremely thermophilic bacteria and archaea: mechanisms for reductant disposal. Environ Technol 31:993–1003CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Niels T. Eriksen
    • 1
  • Martin Leegaard Riis
    • 1
  • Nikolaj Kyndby Holm
    • 1
  • Niels Iversen
    • 1
  1. 1.Department of Biotechnology, Chemistry and Environmental EngineeringAalborg UniversityAalborgDenmark

Personalised recommendations