Biotechnology Letters

, Volume 32, Issue 12, pp 1777–1788 | Cite as

Normalization strategies for microRNA profiling experiments: a ‘normal’ way to a hidden layer of complexity?

  • Swanhild U. Meyer
  • Michael W. Pfaffl
  • Susanne E. Ulbrich
Review

Abstract

MicroRNA (miRNA) profiling is a first important step in elucidating miRNA functions. Real time quantitative PCR (RT-qPCR) and microarray hybridization approaches as well as ultra high throughput sequencing of miRNAs (small RNA-seq) are popular and widely used profiling methods. All of these profiling approaches face significant introduction of bias. Normalization, often an underestimated aspect of data processing, can minimize systematic technical or experimental variation and thus has significant impact on the detection of differentially expressed miRNAs. At present, there is no consensus normalization method for any of the three miRNA profiling approach. Several normalization techniques are currently in use, of which some are similar to mRNA profiling normalization methods, while others are specifically modified or developed for miRNA data. The characteristic nature of miRNA molecules, their composition and the resulting data distribution of profiling experiments challenges the selection of adequate normalization techniques. Based on miRNA profiling studies and comparative studies on normalization methods and their performances, this review provides a critical overview of commonly used and newly developed normalization methods for miRNA RT-qPCR, miRNA hybridization microarray, and small RNA-seq datasets. Emphasis is laid on the complexity, the importance and the potential for further optimization of normalization techniques for miRNA profiling datasets.

Keywords

Microarray MicroRNA Normalization Profiling Real time quantitative PCR Ultra high throughput sequencing 

References

  1. Andersen CL, Jensen JL, Orntoft TF (2004) Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res 64:5245–5250CrossRefPubMedGoogle Scholar
  2. Baker M (2010) RNA interference: microRNAs as biomarkers. Nature 464:1227CrossRefPubMedGoogle Scholar
  3. Bargaje R, Hariharan M, Scaria V, Pillai B (2010) Consensus miRNA expression profiles derived from interplatform normalization of microarray data. RNA 16:16–25CrossRefPubMedGoogle Scholar
  4. Becker C, Hammerle-Fickinger A, Riedmaier I, Pfaffl MW (2010) mRNA and microRNA quality control for RT-qPCR analysis. Methods 50:237–243CrossRefPubMedGoogle Scholar
  5. Benes V, Castoldi M (2010) Expression profiling of microRNA using real-time quantitative PCR, how to use it and what is available. Methods 50:244–249CrossRefPubMedGoogle Scholar
  6. Beuvink I, Kolb FA, Budach W, Garnier A, Lange J, Natt F, Dengler U, Hall J, Filipowicz W, Weiler J (2007) A novel microarray approach reveals new tissue-specific signatures of known and predicted mammalian microRNAs. Nucleic Acids Res 35:e52CrossRefPubMedGoogle Scholar
  7. Bissels U, Wild S, Tomiuk S, Holste A, Hafner M, Tuschl T, Bosio A (2009) Absolute quantification of microRNAs by using a universal reference. RNA 15:2375–2384CrossRefPubMedGoogle Scholar
  8. Bolstad BM, Irizarry RA, Astrand M, Speed TP (2003) A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 19:185–193CrossRefPubMedGoogle Scholar
  9. Bustin SA (2010) Why the need for qPCR publication guidelines?—The case for MIQE. Methods 50:217–226CrossRefPubMedGoogle Scholar
  10. Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL, Vandesompele J, Wittwer CT (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55:611–622CrossRefPubMedGoogle Scholar
  11. Cardinali B, Castellani L, Fasanaro P, Basso A, Alema S, Martelli F, Falcone G (2009) Microrna-221 and microrna-222 modulate differentiation and maturation of skeletal muscle cells. PLoS One 4:e7607CrossRefPubMedGoogle Scholar
  12. Carlsbecker A, Lee JY, Roberts CJ, Dettmer J, Lehesranta S, Zhou J, Lindgren O, Moreno-Risueno MA, Vaten A, Thitamadee S, Campilho A, Sebastian J, Bowman JL, Helariutta Y, Benfey PN (2010) Cell signalling by microRNA165/6 directs gene dose-dependent root cell fate. Nature 465:316–321CrossRefPubMedGoogle Scholar
  13. Carthew RW, Sontheimer EJ (2009) Origins and mechanisms of miRNAs and siRNAs. Cell 136:642–655CrossRefPubMedGoogle Scholar
  14. Castoldi M, Schmidt S, Benes V, Hentze MW, Muckenthaler MU (2008) miChip: an array-based method for microRNA expression profiling using locked nucleic acid capture probes. Nat Protoc 3:321–329CrossRefPubMedGoogle Scholar
  15. Chang KH, Mestdagh P, Vandesompele J, Kerin MJ, Miller N (2010) MicroRNA expression profiling to identify and validate reference genes for relative quantification in colorectal cancer. BMC Cancer 10:173CrossRefPubMedGoogle Scholar
  16. Chen C, Ridzon DA, Broomer AJ, Zhou Z, Lee DH, Nguyen JT, Barbisin M, Xu NL, Mahuvakar VR, Andersen MR, Lao KQ, Livak KJ, Guegler KJ (2005) Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res 33:e179CrossRefPubMedGoogle Scholar
  17. Chiogna M, Massa MS, Risso D, Romualdi C (2009) A comparison on effects of normalisations in the detection of differentially expressed genes. BMC Bioinformatics 10:61CrossRefPubMedGoogle Scholar
  18. Do JH, Choi DK (2006) Normalization of microarray data: single-labeled and dual-labeled arrays. Mol Cells 22:254–261PubMedGoogle Scholar
  19. Fabian MR, Sonenberg N, Filipowicz W (2010) Regulation of mRNA translation and stability by microRNAs. Annu Rev Biochem 79:351–379CrossRefPubMedGoogle Scholar
  20. Gangaraju VK, Lin H (2009) MicroRNAs: key regulators of stem cells. Nat Rev Mol Cell Biol 10:116–125CrossRefPubMedGoogle Scholar
  21. Git A, Dvinge H, Salmon-Divon M, Osborne M, Kutter C, Hadfield J, Bertone P, Caldas C (2010) Systematic comparison of microarray profiling, real-time PCR, and next-generation sequencing technologies for measuring differential microRNA expression. RNA 16:991–1006CrossRefPubMedGoogle Scholar
  22. Griffiths-Jones S, Saini HK, van Dongen S, Enright AJ (2008) miRBase: tools for microRNA genomics. Nucleic Acids Res 36:D154–D158CrossRefPubMedGoogle Scholar
  23. Gunaratne PH (2009) Embryonic stem cell microRNAs: defining factors in induced pluripotent (iPS) and cancer (CSC) stem cells? Curr Stem Cell Res Ther 4:168–177PubMedGoogle Scholar
  24. Hua YJ, Tu K, Tang ZY, Li YX, Xiao HS (2008) Comparison of normalization methods with microRNA microarray. Genomics 92:122–128CrossRefPubMedGoogle Scholar
  25. Huber W, von Heydebreck A, Sultmann H, Poustka A, Vingron M (2002) Variance stabilization applied to microarray data calibration and to the quantification of differential expression. Bioinformatics 18(Suppl 1):S96–S104PubMedGoogle Scholar
  26. Iliopoulos D, Malizos KN, Oikonomou P, Tsezou A (2008) Integrative microRNA and proteomic approaches identify novel osteoarthritis genes and their collaborative metabolic and inflammatory networks. PLoS One 3:e3740CrossRefPubMedGoogle Scholar
  27. Jayaswal V, Lutherborrow M, Ma DD, Hwa YY (2009) Identification of microRNAs with regulatory potential using a matched microRNA-mRNA time-course data. Nucleic Acids Res 37:e60CrossRefPubMedGoogle Scholar
  28. Kim JW, Mori S, Nevins JR (2010) Myc-induced microRNAs integrate Myc-mediated cell proliferation and cell fate. Cancer Res 70:4820–4828CrossRefPubMedGoogle Scholar
  29. Kong W, Zhao JJ, He L, Cheng JQ (2009) Strategies for profiling microRNA expression. J Cell Physiol 218:22–25CrossRefPubMedGoogle Scholar
  30. Li W, Ruan K (2009) MicroRNA detection by microarray. Anal Bioanal Chem 394:1117–1124CrossRefPubMedGoogle Scholar
  31. Liang Y, Ridzon D, Wong L, Chen C (2007) Characterization of microRNA expression profiles in normal human tissues. BMC Genomics 8:166CrossRefPubMedGoogle Scholar
  32. Linsen SE, de Wit E, Janssens G, Heater S, Chapman L, Parkin RK, Fritz B, Wyman SK, de Bruijn E, Voest EE, Kuersten S, Tewari M, Cuppen E (2009) Limitations and possibilities of small RNA digital gene expression profiling. Nat Methods 6(7):474–476CrossRefPubMedGoogle Scholar
  33. Lopez-Romero P, Gonzalez MA, Callejas S, Dopazo A, Irizarry RA (2010) Processing of Agilent microRNA array data. BMC Res Notes 3:18CrossRefPubMedGoogle Scholar
  34. Lu J, Getz G, Miska EA, varez-Saavedra E, Lamb J, Peck D, Sweet-Cordero A, Ebert BL, Mak RH, Ferrando AA, Downing JR, Jacks T, Horvitz HR, Golub TR (2005) MicroRNA expression profiles classify human cancers. Nature 435:834–838CrossRefPubMedGoogle Scholar
  35. Manakov SA, Grant SG, Enright AJ (2009) Reciprocal regulation of microRNA and mRNA profiles in neuronal development and synapse formation. BMC Genomics 10:419CrossRefPubMedGoogle Scholar
  36. Marioni JC, Mason CE, Mane SM, Stephens M, Gilad Y (2008) RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays. Genome Res 18:1509–1517CrossRefPubMedGoogle Scholar
  37. Marques JT, Kim K, Wu PH, Alleyne TM, Jafari N, Carthew RW (2010) Loqs and R2D2 act sequentially in the siRNA pathway in Drosophila. Nat Struct Mol Biol 17:24–30CrossRefPubMedGoogle Scholar
  38. Mestdagh P, Van VP, De WA, Muth D, Westermann F, Speleman F, Vandesompele J (2009) A novel and universal method for microRNA RT-qPCR data normalization. Genome Biol 10:R64CrossRefPubMedGoogle Scholar
  39. Ozsolak F, Platt AR, Jones DR, Reifenberger JG, Sass LE, McInerney P, Thompson JF, Bowers J, Jarosz M, Milos PM (2009) Direct RNA sequencing. Nature 461:814–818CrossRefPubMedGoogle Scholar
  40. Peltier HJ, Latham GJ (2008) Normalization of microRNA expression levels in quantitative RT-PCR assays: identification of suitable reference RNA targets in normal and cancerous human solid tissues. RNA 14:844–852CrossRefPubMedGoogle Scholar
  41. Pfaffl MW, Tichopad A, Prgomet C, Neuvians TP (2004) Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: bestkeeper–excel-based tool using pair-wise correlations. Biotechnol Lett 26:509–515CrossRefPubMedGoogle Scholar
  42. Pfeifer A, Lehmann H (2010) Pharmacological potential of RNAi: focus on miRNA. Pharmacol Ther 126:217–227CrossRefPubMedGoogle Scholar
  43. Pradervand S, Weber J, Thomas J, Bueno M, Wirapati P, Lefort K, Dotto GP, Harshman K (2009) Impact of normalization on miRNA microarray expression profiling. RNA 15:493–501CrossRefPubMedGoogle Scholar
  44. Pradervand S, Weber J, Lemoine F, Consales F, Paillusson A, Dupasquier M, Thomas J, Richter H, Kaessmann H, Beaudoing E, Hagenbuchle O, Harshman K (2010) Concordance among digital gene expression, microarrays, and qPCR when measuring differential expression of microRNAs. Biotechniques 48:219–222CrossRefPubMedGoogle Scholar
  45. Rao Y, Lee Y, Jarjoura D, Ruppert AS, Liu CG, Hsu JC, Hagan JP (2008) A comparison of normalization techniques for microRNA microarray data. Stat Appl Genet Mol Biol 7: Article22Google Scholar
  46. Risso D, Massa MS, Chiogna M, Romualdi C (2009) A modified LOESS normalization applied to microRNA arrays: a comparative evaluation. Bioinformatics 25:2685–2691CrossRefPubMedGoogle Scholar
  47. Robinson MD, Oshlack A (2010) A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol 11:R25CrossRefPubMedGoogle Scholar
  48. Sarkar D, Parkin R, Wyman S, Bendoraite A, Sather C, Delrow J, Godwin AK, Drescher C, Huber W, Gentleman R, Tewari M (2009) Quality assessment and data analysis for microRNA expression arrays. Nucleic Acids Res 37:e17CrossRefPubMedGoogle Scholar
  49. Sato F, Tsuchiya S, Terasawa K, Tsujimoto G (2009) Intra-platform repeatability and inter-platform comparability of microRNA microarray technology. PLoS One 4:e5540CrossRefPubMedGoogle Scholar
  50. Sheng Y, Engstrom PG, Lenhard B (2007) Mammalian microRNA prediction through a support vector machine model of sequence and structure. PLoS One 2:e946CrossRefPubMedGoogle Scholar
  51. Steinhoff C, Vingron M (2006) Normalization and quantification of differential expression in gene expression microarrays. Brief Bioinform 7:166–177CrossRefPubMedGoogle Scholar
  52. Vandesompele J, De PK, Pattyn F, Poppe B, Van RN, De PA, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3: RESEARCH0034Google Scholar
  53. Vasudevan S, Tong Y, Steitz JA (2007) Switching from repression to activation: microRNAs can up-regulate translation. Science 318:1931–1934CrossRefPubMedGoogle Scholar
  54. Wang X (2009) A PCR-based platform for microRNA expression profiling studies. RNA 15:716–723CrossRefPubMedGoogle Scholar
  55. Wang V, Wu W (2009) MicroRNA-based therapeutics for cancer. BioDrugs 23:15–23CrossRefPubMedGoogle Scholar
  56. Wang H, Ach RA, Curry B (2007) Direct and sensitive miRNA profiling from low-input total RNA. RNA 13:151–159CrossRefPubMedGoogle Scholar
  57. Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10:57–63CrossRefPubMedGoogle Scholar
  58. Wang B, Wang XF, Howell P, Qian X, Huang K, Riker AI, Ju J, Xi Y (2010) A personalized microRNA microarray normalization method using a logistic regression model. Bioinformatics 26:228–234CrossRefPubMedGoogle Scholar
  59. Willenbrock H, Salomon J, Sokilde R, Barken KB, Hansen TN, Nielsen FC, Moller S, Litman T (2009) Quantitative miRNA expression analysis: comparing microarrays with next-generation sequencing. RNA 15:2028–2034CrossRefPubMedGoogle Scholar
  60. Xiong H, Zhang D, Martyniuk CJ, Trudeau VL, Xia X (2008) Using generalized procrustes analysis (GPA) for normalization of cDNA microarray data. BMC Bioinformatics 9:25CrossRefPubMedGoogle Scholar
  61. Yin JQ, Zhao RC, Morris KV (2008) Profiling microRNA expression with microarrays. Trends Biotechnol 26:70–76CrossRefPubMedGoogle Scholar
  62. Zhang L, Chia JM, Kumari S, Stein JC, Liu Z, Narechania A, Maher CA, Guill K, McMullen MD, Ware D (2009) A genome-wide characterization of microRNA genes in maize. PLoS Genet 5:e1000716CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Swanhild U. Meyer
    • 1
  • Michael W. Pfaffl
    • 1
  • Susanne E. Ulbrich
    • 1
  1. 1.Physiology Weihenstephan, ZIEL Research Center for Nutrition and Food SciencesTechnische Universität MünchenFreisingGermany

Personalised recommendations