Biotechnology Letters

, Volume 32, Issue 9, pp 1189–1198

N-Linked glycoengineering for human therapeutic proteins in bacteria

Review

Abstract

Approx. 70% of human therapeutic proteins are N-linked glycoproteins, and therefore host cells for production must contain the relevant protein modification machinery. The discovery and characterisation of the N-linked glycosylation pathway in the pathogenic bacterium Campylobacter jejuni, and subsequently its functional transfer to Escherichia coli, presents the opportunity of using prokaryotes as cell factories for therapeutic protein production. Not only could bacteria reduce costs and increase yields, but the improved feasibility to genetically control microorganisms means new and improved pharmacokinetics of therapeutics is an exciting possibility. This is a relatively new concept, and progress in bacterial N-glycosylation characterisation is reviewed and metabolic engineering targets revealed.

Keywords

N-Linked glycosylation Therapeutic proteins Campylobacter jejuni E. coli Metabolic engineering 

References

  1. Abu-Qarn M, Eichler J, Sharon N (2008) Not just for Eukarya anymore: protein glycosylation in bacteria and Archaea. Curr Opin Struct Biol 18:544–550CrossRefPubMedGoogle Scholar
  2. Apweiler R, Hermjakob H, Sharon N (1999) On the frequency of protein glycosylation, as deduced from analysis of the SWISS-PROT database. Biochim Biophys Acta 1473:4–8PubMedGoogle Scholar
  3. Baneyx F (1999) Recombinant protein expression in Escherichia coli. Curr Opin Biotechnol 10:411–421CrossRefPubMedGoogle Scholar
  4. Bickel T, Lehle L, Schwarz M et al (2005) Biosynthesis of lipid-linked oligosaccharides in Saccharomyces cerevisiae: Alg13p and Alg14p form a complex required for the formation of GlcNAc(2)-PP-dolichol. J Biol Chem 280:34500–34506CrossRefPubMedGoogle Scholar
  5. Burda P, Aebi M (1999) The dolichol pathway of N-linked glycosylation. Biochim Biophys Acta 1426:239–257PubMedGoogle Scholar
  6. Chantret I, Dancourt J, Barbat A et al (2005) Two proteins homologous to the N- and C-terminal domains of the bacterial glycosyltransferase Murg are required for the second step of dolichyl-linked oligosaccharide synthesis in Saccharomyces cerevisiae. J Biol Chem 280:9236–9242CrossRefPubMedGoogle Scholar
  7. Dempski RE Jr, Imperiali B (2002) Oligosaccharyl transferase: gatekeeper to the secretory pathway. Curr Opin Chem Biol 6:844–850CrossRefPubMedGoogle Scholar
  8. Egrie JC, Browne JK (2001) Development and characterization of novel erythropoiesis stimulating protein (NESP). Br J Cancer 84(Suppl1):3–10CrossRefPubMedGoogle Scholar
  9. Elliott S, Lorenzini T, Asher S et al (2003) Enhancement of therapeutic protein in vivo activities through glycoengineering. Nat Biotechnol 21:414–421CrossRefPubMedGoogle Scholar
  10. Fanger MW, Smyth DG (1972) Oligosaccharide units of rabbit IgG multiple CHO attachment sites. Biochem J 127:757–765PubMedGoogle Scholar
  11. Feldman MF, Wacker M, Hernandez M et al (2005) Engineering N-linked protein glycosylation with diverse O antigen lipopolysaccharide structures in Escherichia coli. Proc Natl Acad Sci USA 102:3016–3021CrossRefPubMedGoogle Scholar
  12. Fussenegger M, Schlatter S, Datwyler D et al (1998) Controlled proliferation by multigene metabolic engineering enhances the productivity of Chinese hamster ovary cells. Nat Biotechnol 16:468–472CrossRefPubMedGoogle Scholar
  13. Gao XD, Tachikawa H, Sato T et al (2005) Alg14 recruits Alg13 to the cytoplasmic face of the endoplasmic reticulum to form a novel bipartite UDP-N-acetylglucosamine transferase required for the second step of N-linked glycosylation. J Biol Chem 280:36254–36262CrossRefPubMedGoogle Scholar
  14. Glover KJ, Weerapana E, Chen MM et al (2006) Direct biochemical evidence for the utilization of UDP-bacillosamine by PglC, an essential glycosyl-1-phosphate transferase in the Campylobacter jejuni N-linked glycosylation pathway. Biochemistry 45:5343–5350CrossRefPubMedGoogle Scholar
  15. Gomord V, Faye L (2004) Posttranslational modification of therapeutic proteins in plants. Curr Opin Plant Biol 7:171–181CrossRefPubMedGoogle Scholar
  16. Guerry P, Ewing C, Schirm M et al (2006) Changes in flagellin glycosylation affect Campylobacter autoagglutination and virulence. Mol Microbiol 60:299–311CrossRefPubMedGoogle Scholar
  17. Hamilton SR, Gerngross TU (2007) Glycosylation engineering in yeast: the advent of fully humanized yeast. Curr Opin Biotechnol 18:387–392CrossRefPubMedGoogle Scholar
  18. Hamilton SR, Bobrowicz P, Bobrowicz B et al (2003) Production of complex human glycoproteins in yeast. Science 301:1244–1246CrossRefPubMedGoogle Scholar
  19. Hitchen PG, Dell A (2006) Bacterial glycoproteomics. Microbiology 152:1575–1580CrossRefPubMedGoogle Scholar
  20. Houdebine LM (2002) Antibody manufacture in transgenic animals and comparisons with other systems. Curr Opin Biotechnol 13:625–629CrossRefPubMedGoogle Scholar
  21. Inga B, Schmidt MA (2002) Never say never again: protein glycosylation in pathogenic bacteria. Mol Microbiol 45:267–276CrossRefGoogle Scholar
  22. Jacobs PP, Callewaert N (2009) N-glycosylation engineering of biopharmaceutical expression systems. Curr Mol Med 9:774–800CrossRefPubMedGoogle Scholar
  23. Johnson IS (1983) Human insulin from recombinant DNA technology. Science 219:632–637CrossRefPubMedGoogle Scholar
  24. Kelleher DJ, Gilmore R (2006) An evolving view of the eukaryotic oligosaccharyltransferase. Glycobiology 16:47R–62RCrossRefPubMedGoogle Scholar
  25. Kelly J, Jarrell H, Millar L et al (2006) Biosynthesis of the N-linked glycan in Campylobacter jejuni and addition onto protein through block transfer. J Bacteriol 188:2427–2434CrossRefPubMedGoogle Scholar
  26. Kowarik M, Numao S, Feldman MF et al (2006) N-linked glycosylation of folded proteins by the bacterial oligosaccharyltransferase. Science 314:1148–1150CrossRefPubMedGoogle Scholar
  27. Legardinier S, Klett D, Poirier J-C et al (2005) Mammalian-like nonsialyl complex-type N-glycosylation of equine gonadotropins in Mimic™ insect cells. Glycobiology 15:776–790CrossRefPubMedGoogle Scholar
  28. Lehle L, Tanner W (1978) Glycosyl transfer from dolichyl phosphate sugars to endogenous and exogenous glycoprotein acceptors in yeast. Eur J Biochem 83:563–570CrossRefPubMedGoogle Scholar
  29. Li H, Sethuraman N, Stadheim TA et al (2006) Optimization of humanized IgGs in glycoengineered Pichia pastoris. Nat Biotechnol 24:210–215CrossRefPubMedGoogle Scholar
  30. Linton D, Allan E, Karlyshev AV et al (2002) Identification of N-acetylgalactosamine-containing glycoproteins PEB3 and CgpA in Campylobacter jejuni. Mol Microbiol 43:497–508CrossRefPubMedGoogle Scholar
  31. Linton D, Dorrell N, Hitchen PG et al (2005) Functional analysis of the Campylobacter jejuni N-linked protein glycosylation pathway. Mol Microbiol 55:1695–1703CrossRefPubMedGoogle Scholar
  32. Mescher MF, Strominger JL, Watson SW (1974) Protein and carbohydrate composition of the cell envelope of Halobacterium salinarium. J Bacteriol 120:945–954PubMedGoogle Scholar
  33. Messner P (2004) Prokaryotic glycoproteins: unexplored but important. J Bacteriol 186:2517–2519CrossRefPubMedGoogle Scholar
  34. Mobili P, Serradell Mde L, Trejo S et al (2009) Heterogeneity of S-layer proteins from aggregating and non-aggregating Lactobacillus kefir strains. Antonie Van Leeuwenhoek 95:363–372CrossRefPubMedGoogle Scholar
  35. Müller D, Bayer K, Mattanovich D (2006) Potentials and limitations of prokaryotic and eukaryotic expression systems for recombinant protein production—a comparative view. In: The 4th recombinant protein production meeting. Microbial Cell Factories, Barcelona, SpainGoogle Scholar
  36. Parkhill J, Wren BW, Mungall K et al (2000) The genome sequence of the food-borne pathogen Campylobacter jejuni reveals hypervariable sequences. Nature 403:665–668CrossRefPubMedGoogle Scholar
  37. Peng Z, Wu H, Ruiz T et al (2008) Role of gap3 in Fap1 glycosylation, stability, in vitro adhesion, and fimbrial and biofilm formation of Streptococcus parasanguinis. Oral Microbiol Immunol 23:70–78PubMedGoogle Scholar
  38. Potgieter TI, Cukan M, Drummond JE et al (2009) Production of monoclonal antibodies by glycoengineered Pichia pastoris. J Biotechnol 139:318–325CrossRefPubMedGoogle Scholar
  39. Price NP, Momany FA (2005) Modeling bacterial UDP-HexNAc: polyprenol-P HexNAc-1-P transferases. Glycobiology 15:29R–42RCrossRefPubMedGoogle Scholar
  40. Rangarajan ES, Bhatia S, Watson DC et al (2007) Structural context for protein N-glycosylation in bacteria: the structure of PEB3, an adhesin from Campylobacter jejuni. Protein Sci 16:990–995CrossRefPubMedGoogle Scholar
  41. Sarkar A, Fritz T, Taylor W et al (1995) Disaccharide uptake and priming in animal cells: inhibition of sialyl Lewis X by acetylated Gal beta 1→4GlcNAc beta-O-naphthalenemethanol. Proc Natl Acad Sci USA 92:3323–3327CrossRefPubMedGoogle Scholar
  42. Schaffer C, Messner P (2004) Surface-layer glycoproteins: an example for the diversity of bacterial glycosylation with promising impacts on nanobiotechnology. Glycobiology 14:31R–42RCrossRefPubMedGoogle Scholar
  43. Schwarz F, Huang W, Li C et al (2010) A combined method for producing homogeneous glycoproteins with eukaryotic N-glycosylation. Nat Chem Biol 6(4):264–266CrossRefPubMedGoogle Scholar
  44. Sethuraman N, Stadheim TA (2006) Challenges in therapeutic glycoprotein production. Curr Opin Biotechnol 17:341–346CrossRefPubMedGoogle Scholar
  45. Shao J, Zhang J, Kowal P et al (2002) Donor substrate regeneration for efficient synthesis of globotetraose and isoglobotetraose. Appl Environ Microbiol 68:5634–5640CrossRefPubMedGoogle Scholar
  46. Sheeley DM, Merrill BM, Taylor LC (1997) Characterization of monoclonal antibody glycosylation: comparison of expression systems and identification of terminal alpha-linked galactose. Anal Biochem 247:102–110CrossRefPubMedGoogle Scholar
  47. Skretas G, Carroll S, DeFrees S et al (2009) Expression of active human sialyltransferase ST6GalNAcI in Escherichia coli. Microb Cell Fact 8:50CrossRefPubMedGoogle Scholar
  48. Strasser R, Altmann F, Mach L et al (2004) Generation of Arabidopsis thaliana plants with complex N-glycans lacking beta1,2-linked xylose and core alpha1,3-linked fucose. FEBS Lett 561:132–136CrossRefPubMedGoogle Scholar
  49. Szymanski CM, Burr DH, Guerry P (2002) Campylobacter protein glycosylation affects host cell interactions. Infect Immun 70:2242–2244CrossRefPubMedGoogle Scholar
  50. Tatar LD, Marolda CL, Polischuk AN et al (2007) An Escherichia coli undecaprenyl-pyrophosphate phosphatase implicated in undecaprenyl phosphate recycling. Microbiology 153:2518–2529CrossRefPubMedGoogle Scholar
  51. van Berkel PH, Welling MM, Geerts M et al (2002) Large scale production of recombinant human lactoferrin in the milk of transgenic cows. Nat Biotechnol 20:484–487CrossRefPubMedGoogle Scholar
  52. Varki A (1993) Biological roles of oligosaccharides: all of the theories are correct. Glycobiology 3:97–130CrossRefPubMedGoogle Scholar
  53. Varki A, Cummings R, Esko J et al (1999) Essentials of glycobiology. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NYGoogle Scholar
  54. Wacker M, Linton D, Hitchen PG et al (2002) N-linked glycosylation in Campylobacter jejuni and its functional transfer into E. coli. Science 298:1790–1793CrossRefPubMedGoogle Scholar
  55. Wang L, Brock A, Herberich B et al (2001) Expanding the genetic code of Escherichia coli. Science 292:498–500CrossRefPubMedGoogle Scholar
  56. Warner TG (1999) Enhancing therapeutic glycoprotein production in Chinese hamster ovary cells by metabolic engineering endogenous gene control with antisense DNA and gene targeting. Glycobiology 9:841–850CrossRefPubMedGoogle Scholar
  57. Weerapana E, Imperiali B (2006) Asparagine-linked protein glycosylation: from eukaryotic to prokaryotic systems. Glycobiology 16:91R–101RCrossRefPubMedGoogle Scholar
  58. Young NM, Brisson JR, Kelly J et al (2002) Structure of the N-linked glycan present on multiple glycoproteins in the Gram-negative bacterium, Campylobacter jejuni. J Biol Chem 277:42530–42539CrossRefPubMedGoogle Scholar
  59. Yuen CT, Storring P, Tiplady R et al (2005) Relationships between the N-glycan structures and biological activities of recombinant human erythropoietins produced using different culture conditions and purification procedures. Adv Exp Med Biol 564:141–142CrossRefPubMedGoogle Scholar
  60. Yurist-Doutsch S, Chaban B, VanDyke DJ et al (2008) Sweet to the extreme: protein glycosylation in Archaea. Mol Microbiol 68:1079–1084CrossRefPubMedGoogle Scholar
  61. Zhang Z, Gildersleeve J, Yang YY et al (2004) A new strategy for the synthesis of glycoproteins. Science 303:371–373CrossRefPubMedGoogle Scholar
  62. Zhang Z, Gildersleeve J, Yang YY et al (2009) Retraction. Science 326:1187CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.ChELSI Institute, Biological and Environmental Systems Group, Department of Chemical and Process EngineeringUniversity of SheffieldSheffieldUK

Personalised recommendations