Advertisement

Biotechnology Letters

, Volume 32, Issue 5, pp 675–680 | Cite as

Encapsulation of recombinant E. coli expressing cyclopentanone monooxygenase in polyelectrolyte complex capsules for Baeyer–Villiger biooxidation of 8-oxabicyclo[3.2.1]oct-6-en-3-one

  • Martin Hucík
  • Marek BučkoEmail author
  • Peter Gemeiner
  • Vladimír Štefuca
  • Alica Vikartovská
  • Marko D. Mihovilovič
  • Florian Rudroff
  • Naseem Iqbal
  • Dušan ChorvátJr.
  • Igor Lacík
Original Research Paper

Abstract

Recombinant Escherichia coli cells, over-expressing cyclopentanone monooxygenase activity, were immobilized in polyelectrolyte complex capsules, made of sodium alginate, cellulose sulfate, poly(methylene-co-guanidine), CaCl2 and NaCl. More than 90% of the cell viability was preserved during the encapsulation process. Moreover, the initial enzyme activity was fully maintained within encapsulated cells while it halved in free cells. Both encapsulated and free cells reached the end point of the Baeyer–Villiger biooxidation of 8-oxabicyclo[3.2.1]oct-6-en-3-one to 4,9-dioxabicyclo[4.2.1]non-7-en-3-one at the same time (48 h). Similarly, the enantiomeric excess above 94% was identical for encapsulated and free cells.

Keywords

Baeyer–Villiger biooxidation Cyclopentanone monooxygenase Encapsulation Immobilization Poly(methylene-co-guanidine) 

Notes

Acknowledgments

This work was supported by the Slovak Research and Development Agency under the contract APVV-51-033205, the Slovak Grant Agency for Science VEGA 1/4452/07, COST Action 865 and COST Action CM0701.

Supplementary material

10529_2010_203_MOESM1_ESM.doc (128 kb)
Supplementary material 1 (DOC 127 kb)

References

  1. Bučko M, Vikartovská A, Lacík I, Kolláriková G, Gemeiner P, Pätoprstý V, Brygin M (2005) Immobilization of a whole-cell epoxide-hydrolyzing biocatalyst in sodium alginate–cellulose sulfate–poly(methylene-co-guanidine) capsules using a controlled encapsulation process. Enzym Microb Technol 36:118–126CrossRefGoogle Scholar
  2. Bučko M, Gemeiner P, Vikartovská A, Mislovičová D, Lacík I, Tkáč J (2009) Coencapsulation of oxygen carriers and glucose oxidase in polyelectrolyte complex capsules for the enhancement of d-gluconic acid and δ-gluconolactone production. Artif Cells Blood Substit Biotechnol (accepted)Google Scholar
  3. Doig SG, Simpson H, Alphand V, Furstoss R, Woodley JM (2003) Characterization of a recombinant Escherichia coli TOP10 [pQR239] whole-cell biocatalyst for stereoselective Baeyer–Villiger oxidations. Enzym Microb Technol 32:347–355CrossRefGoogle Scholar
  4. Kim H, Hoffmann HMR (2000) Synthesis of the C38-C44 segment of altohyrtin A—with an addendum on the preparation of 8-oxabicyclo[3.2.1]oct-6-en-3-one. Eur J Org Chem 2000:2195–2201CrossRefGoogle Scholar
  5. Kumar PKR, Schügerl K (1990) Immobilization of genetically engineered cells: a new strategy for higher stability. J Biotechnol 14:255–272CrossRefPubMedGoogle Scholar
  6. Mihovilovic MD (2006) Enzyme mediated Baeyer–Villiger oxidations. Curr Org Chem 10:1265–1287CrossRefGoogle Scholar
  7. Mihovilovic MD, Rudroff F, Grötzl B, Kapitan P, Snajdrova R, Rydz J, Mach R (2005) Family clustering of Baeyer–Villiger monooxygenases based on protein sequence and stereo preference. Angew Chem Int Ed 44:3609–3613CrossRefGoogle Scholar
  8. Mihovilovic DM, Snajdrova R, Grötzl B (2006a) Microbial Baeyer–Villiger oxidation of 4,4-disubstituted cyclohexan- and cyclohexanones by recombinant whole-cells expressing monooxygenases of bacterial origin. J Mol Catal B: Enzym 39:135–140CrossRefGoogle Scholar
  9. Mihovilovic MD, Bianchi DA, Rudroff F (2006b) Accessing tetrahydrofuran based natural products by microbial Baeyer–Villiger biooxidation. Chem Commun 30:3214–3216CrossRefGoogle Scholar
  10. Patel RN (2008) Synthesis of chiral pharmaceutical intermediates by biocatalysis. Coord Chem Rev 252:659–701CrossRefGoogle Scholar
  11. Pazmino DET, Snajdrova R, Baas BJ, Ghobrial M, Mihovilovic MD, Fraaije MW (2008) Self-sufficient Baeyer–Villiger monooxygenases—effective coenzyme regeneration for biooxygenations by fusion engineering. Angew Chem Int Ed 47:2275–2278CrossRefGoogle Scholar
  12. Rudroff F, Alphand V, Furstoss R, Mihovilovic MD (2006) Optimizing fermentation conditions of recombinant Escherichia coli expressing cyclopentanone monooxygenase. Org Process Res Dev 10:599–604CrossRefGoogle Scholar
  13. Vikartovská A, Bučko M, Mislovičová D, Pätoprstý V, Lacík I, Gemeiner P (2007) Improvement of the stability of glucose oxidase via encapsulation in sodium alginate–cellulose sulfate-poly(methylene-co-guanidine) capsules. Enzym Microb Technol 41:748–755CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Martin Hucík
    • 1
  • Marek Bučko
    • 2
    Email author
  • Peter Gemeiner
    • 2
  • Vladimír Štefuca
    • 1
  • Alica Vikartovská
    • 2
  • Marko D. Mihovilovič
    • 3
  • Florian Rudroff
    • 3
  • Naseem Iqbal
    • 3
  • Dušan ChorvátJr.
    • 4
  • Igor Lacík
    • 5
  1. 1.Faculty of Chemical and Food Technology SUTInstitute of Chemical and Environmental EngineeringBratislavaSlovakia
  2. 2.Department of GlycobiotechnologyInstitute of Chemistry, Slovak Academy of SciencesBratislavaSlovakia
  3. 3.Institute of Applied Synthetic ChemistryVienna University of TechnologyViennaAustria
  4. 4.International Laser CentreBratislavaSlovakia
  5. 5.Polymer Institute, Slovak Academy of SciencesBratislavaSlovakia

Personalised recommendations