Biotechnology Letters

, Volume 31, Issue 8, pp 1143–1149 | Cite as

Suspension-adapted Chinese hamster ovary-derived cells expressing green fluorescent protein as a screening tool for biomaterials

  • E.-M. Engelhardt
  • S. Houis
  • T. Gries
  • J. Hilborn
  • M. Adam
  • F. M. Wurm
Original Research Paper

Abstract

Synthetic biomaterials play an important role in regenerative medicine. To be effective they must support cell attachment and proliferation in addition to being non-toxic and non-immunogenic. We used a suspension-adapted Chinese hamster ovary-derived cell line expressing green fluorescent protein (GFP) to assess cell attachment and growth on synthetic biomaterials by direct measurement of GFP-specific fluorescence. To simplify operations, all cell cultivation steps were performed in orbitally-shaken, disposable containers. Comparative studies between this GFP assay and previously established cell quantification assays demonstrated that this novel approach is suitable for rapid screening of a large number of samples. Furthermore the utility of our assay system was confirmed by evaluation of cell growth on three polyvinylidene fluoride polymer scaffolds that differed in pore diameter and drawing conditions. The data presented here prove the general utility of GFP-expressing cell lines and orbital shaking technology for the screening of biomaterials for tissue engineering applications.

Keywords

Cell attachment Cell growth Green fluorescent protein Scaffolds Screening Suspension cells 

References

  1. Ananta M, Aulin C, Hilborn J et al (2009) A poly (lactic acid-co-caprolactone)–collagen hybrid for tissue engineering applications. Tissue Eng 15. doi: 10.1089/ten.tea.2008.0914
  2. Cahn F (1990) Biomaterials aspects of porous microcarriers for animal cell culture. Trends Biotechnol 8(5):131–136PubMedCrossRefGoogle Scholar
  3. Conconi MT, Lora S et al (2006) In vitro evaluation of poly[bis(ethyl alanato)phosphazene] as a scaffold for bone tissue engineering. Tissue Eng 12(4):811–819PubMedCrossRefGoogle Scholar
  4. De Jesus M, Girard P et al (2003) TubeSpin satellites: a fast track approach for process development with animal cells using shaking technology. Biochem Eng J 17:217–223CrossRefGoogle Scholar
  5. Derouazi M, Girard P et al (2004) Serum-free large-scale transient transfection of CHO cells. Biotechnol Bioeng 87(4):537–545PubMedCrossRefGoogle Scholar
  6. Derouazi M, Martinet D et al (2006) Genetic characterization of CHO production host DG44 and derivative recombinant cell lines. Biochem Biophys Res Commun 340(4):1069–1077PubMedCrossRefGoogle Scholar
  7. Durual S, Rideau A et al (2007) Lentiviral PU.1 overexpression restores differentiation in myeloid leukemic blasts. Leukemia 21(5):1050–1059PubMedGoogle Scholar
  8. Hamm A, Krott N et al (2002) Efficient transfection method for primary cells. Tissue Eng 8(2):235–245PubMedCrossRefGoogle Scholar
  9. Hunt L, Jordan M et al (1999) GFP-expressing mammalian cells for fast, sensitive, noninvasive cell growth assessment in a kinetic mode. Biotechnol Bioeng 65(2):201–205PubMedCrossRefGoogle Scholar
  10. Jee T, Lee H et al (2007) Effect of microstructures of PVDF on surface adhesive forces. Tribol Lett 26:125–130CrossRefGoogle Scholar
  11. Kain S, Chalfie M (1998) GFP—green fluorescent protein; properties, applications and protocols. Wiley,  Google Scholar
  12. Li J, Wang S et al (2000) Green fluorescent protein in Saccharomyces cerevisiae: real-time studies of the GAL1 promoter. Biotechnol Bioeng 70(2):187–196PubMedCrossRefGoogle Scholar
  13. Lovinger AJ (1982) Developments in crystalline polymers. Applied Science Publications, LondonGoogle Scholar
  14. March JC, Rao G et al (2003) Biotechnological applications of green fluorescent protein. Appl Microbiol Biotechnol 62(4):303–315PubMedCrossRefGoogle Scholar
  15. Moroni L, Licht R et al (2006) Fiber diameter and texture of electrospun PEOT/PBT scaffolds influence human mesenchymal stem cell proliferation and morphology, and the release of incorporated compounds. Biomaterials 27(28):4911–4922PubMedCrossRefGoogle Scholar
  16. Muller N, Girard P et al (2005) Orbital shaker technology for the cultivation of mammalian cells in suspension. Biotechnol Bioeng 89(4):400–406PubMedCrossRefGoogle Scholar
  17. O’Brien FJ, Harley BA et al (2005) The effect of pore size on cell adhesion in collagen-GAG scaffolds. Biomaterials 26(4):433–441PubMedCrossRefGoogle Scholar
  18. Pattison MA, Wurster S et al (2005) Three-dimensional, nano-structured PLGA scaffolds for bladder tissue replacement applications. Biomaterials 26(15):2491–2500PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • E.-M. Engelhardt
    • 1
  • S. Houis
    • 2
  • T. Gries
    • 2
  • J. Hilborn
    • 3
  • M. Adam
    • 1
  • F. M. Wurm
    • 1
  1. 1.Laboratory of Cellular BiotechnologyEcole Polytechnique Fédérale de Lausanne, School of Life SciencesLausanneSwitzerland
  2. 2.Institut für TextiltechnikRWTH Aachen UniversityAachenGermany
  3. 3.Department of Materials Chemistry, Polymer ChemistryUppsala UniversityUppsalaSweden

Personalised recommendations