Advertisement

Biotechnology Letters

, Volume 31, Issue 8, pp 1211–1216 | Cite as

Removal of selenite from wastewater using microbial fuel cells

  • Tunc Catal
  • Hakan Bermek
  • Hong Liu
Original Research Paper

Abstract

Simultaneous electricity generation and selenium removal was evaluated in single-chamber microbial fuel cells (MFCs) with acetate and glucose as carbon sources. Power output was not affected by selenite up to 125 mg l−1 with glucose as substrate. Coulombic efficiencies of MFCs with glucose increased from 25% to 38% at 150 mg Se l−1. About 99% of 50 and 200 mg Se l−1 selenite was removed in 48 and 72 h for MFCs fed with acetate and glucose, respectively, demonstrating the potential of using MFC technology for Se remediation.

Keywords

Electricity generation Microbial fuel cell Selenium removal Wastewater treatment 

Notes

Acknowledgements

This study was partially supported by the U.S. National Science Foundation CBET 0828544 and the U.S. Department of Transportation through Western Regional Sungrant Initiative.

References

  1. Astratinei V, van Hullebusch E, Lens P (2006) Bioconversion of selenate in methanogenic anaerobic granular sludge. J Environ Qual 35(5):1873–1883PubMedCrossRefGoogle Scholar
  2. Banuelos GS, Lin ZQ (2005) Phytoremediation management of selenium-laden drainage sediments in the San Luis Drain: a greenhouse feasibility study. Ecotoxicol Environ Safety 62(3):309–316PubMedCrossRefGoogle Scholar
  3. Catal T, Liu H, Bermek H (2008a) Selenium induces manganese-dependent peroxidase activity by the White-Rot Fungus Bjerkandera adusta (Willdenow) P. Karsten. Biol Trace Elem Res 123(1–3):211–217PubMedCrossRefGoogle Scholar
  4. Catal T, Li K, Bermek H, Liu H (2008b) Electricity production from twelve monosaccharides using microbial fuel cells. J Power Sources 175(1):196–200CrossRefGoogle Scholar
  5. Catal T, Xu S, Li K, Bermek H, Liu H (2008c) Electricity generation from polyalcohols in single-chamber microbial fuel cells. Biosens Bioelectron 24(4):849–854CrossRefGoogle Scholar
  6. Cheng S, Liu H, Logan BE (2006) Power densities using different cathode catalysts (Pt and CoTMPP) and polymer binders (Nafion and PTFE) in single chamber microbial fuel cells. Environ Sci Technol 40(1):364–369PubMedCrossRefGoogle Scholar
  7. Fan Y, Hu H, Liu H (2007) Enhanced Coulombic efficiency and power density of air-cathode microbial fuel cells with an improved cell configuration. J Power Sources 171(2):348–354CrossRefGoogle Scholar
  8. Fujita M, Ike M, Kashiwa M, Hashimoto R, Soda S (2002) Laboratory-scale continuous reactor for soluble selenium removal using selenate-reducing bacterium, Bacillus sp. SF-1. Biotechnol Bioeng 80(7):755–761PubMedCrossRefGoogle Scholar
  9. Hamilton SF (2004) Review of selenium toxicity in aquatic food chains. Sci Total Environ 326(1–3):1–31PubMedGoogle Scholar
  10. Kashiwa M, Nishimoto S, Takahashi K, Ike M, Fujita M (2000) Factors affecting soluble selenium removal by a selenate-reducing bacterium Bacillus sp. SF-1. J Biosci Bioeng 89(6):528–533PubMedCrossRefGoogle Scholar
  11. Lee JH, Han J, Choi H, Hur HG (2007) Effects of temperature and dissolved oxygen on Se(IV) removal and Se(0) precipitation by Shewanella sp. HN-41. Chemosphere 68(10):1898–1905PubMedCrossRefGoogle Scholar
  12. Lemly AD (1997) Ecosystem recovery following selenium contamination in a freshwater reservoir. Ecotoxicol Environ Saf 36(3):275–281PubMedCrossRefGoogle Scholar
  13. Lenz M, Van Hullebusch ED, Hommes G, Corvini PFX, Lens PNL (2008) Selenate removal in methanogenic and sulfate-reducing upflow anaerobic sludge bed reactors. Water Res 42(8–9):2184–2194PubMedCrossRefGoogle Scholar
  14. Liu H, Logan B (2004) Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane. Environ Sci Technol 38(14):4040–4046PubMedCrossRefGoogle Scholar
  15. Logan BE, Cheng S, Watson V, Esdadt G (2007) Graphite fiber brush for increased power production in air-cathode microbial fuel cells. Environ Sci Technol 41(9):3341–3347PubMedCrossRefGoogle Scholar
  16. Losi ME, Frankenberger WT Jr (1997) Reduction of selenium oxyanions by Enterobacter cloacae SLD 1a-I: isolation and growth of the bacterium and its expulsion of selenium particles. Appl Environ Microbiol 63(8):3079–3084PubMedGoogle Scholar
  17. Lovley DR, Phillips EJP (1988) Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese. Appl Environ Microbiol 54:1472–1480PubMedGoogle Scholar
  18. Luo H, Liu G, Zhang R, Jin S (2008) Phenol degradation in microbial fuel cells. Chem Eng J. doi: 101016/jcej200807011
  19. Morita M, Uemoto H, Watanabe A (2007) Reduction of selenium oxyanions in wastewater using two bacterial strains. Eng Life Sci 7(3):235–240CrossRefGoogle Scholar
  20. Morris JM, Jin S (2007) Feasibility of using microbial fuel cell technology in bioremediation of hydrocarbons in groundwater. J Environ Sci Health A Tox Hazard Subst Environ Eng 43(1):18–23Google Scholar
  21. Narasingarao P, Häggblom MM (2007) Identification of anaerobic selenate-respiring bacteria from aquatic sediments. Appl Environ Microbiol 73(11):3519–3527PubMedCrossRefGoogle Scholar
  22. Rege MA, Yonge DR, Mendoza DP et al (1999) Selenium reduction by a denitrifying consortium. Biotechnol Bioeng 62(4):479–484PubMedCrossRefGoogle Scholar
  23. Riedel GF, Ferrier DP, Sanders JG (1991) Uptake of selenium by freshwater phytoplankton. Water Air Soil Pollut 57–58(1):23–30CrossRefGoogle Scholar
  24. Rovira M, Giménez J, Martínez M et al (2008) Sorption of selenium (IV) and selenium (VI) onto natural iron oxides: goethite and hematite. J Hazard Mater 150(2):279–284PubMedCrossRefGoogle Scholar
  25. Safavi A, Sedghy HR, Shams E (1999) Kinetic spectrophotometric determination of trace amounts of selenium and vanadium. Fresenius J Anal Chem 365(6):504–510CrossRefGoogle Scholar
  26. Skorupa JP (1998) Selenium poisoning of fish and wildlife in nature: lessons from twelve real-world examples. In: Frankenberger W, Engberg RA (eds) Environmental chemistry of selenium. Marcel Dekker Inc, New York, pp 315–354Google Scholar
  27. Sukkasem C, Xu S, Park S, Boonsawang P, Liu H (2008) Effect of nitrate on the performance of single chamber air cathode microbial fuel cells. Water Res 42(19):4743–4750PubMedCrossRefGoogle Scholar
  28. Tomei FA, Barton LL, Lemanski CL, Zocco TG, Fink NH, Sillerud LO (1995) Transformation of selenate and selenite to elemental selenium by Desulfovibrio desulfuricans. J Ind Microbiol 14(3–4):329–336CrossRefGoogle Scholar
  29. Yamada A, Miyashita M, Inoue K, Matsunaga T (1997) Extracellular reduction of selenite by a novel marine photosynthetic bacterium. Appl Microbiol Biotechnol 48(3):367–373PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Department of Biological and Ecological EngineeringOregon State UniversityCorvallisUSA
  2. 2.Department of Molecular Biology and GeneticsIstanbul Technical UniversityMaslak, IstanbulTurkey

Personalised recommendations