Advertisement

Biotechnology Letters

, Volume 32, Issue 3, pp 351–359 | Cite as

Biodegradation and biotransformation of organofluorine compounds

  • Cormac D. Murphy
Review

Abstract

The carbon–fluorine bond is one of the strongest in nature, and the increasing use of organofluorine compounds in agriculture, human and veterinary medicine, and industry has raised concerns about their fate in the environment. Microorganisms can degrade organofluorine compounds, either via specific enzymatic hydrolysis of the C–F bond, or through transformation by catabolic enzymes with broad substrate specificities. Here our current understanding of organofluorine catabolism in microorganisms is summarised.

Keywords

Bioremediation Dehalogenase Fluoride Fluoroaromatic Organofluoro compounds 

Notes

Acknowledgement

The author thanks Ben Clark for helpful discussions during the preparation of the manuscript.

References

  1. Ali DA, Callely AG, Hayes M (1962) Ability of Vibrio grown on benzoate to oxidize para-fluorobenzoate. Nature 196:194–195CrossRefGoogle Scholar
  2. Barbosa JD, de Oliveira CMC, Tokarnia CH et al (2003) Comparison of the sensibility of cattle and buffaloes to poisoning by Palicourea marcgravii (Rubiaceae). Pesqui Vet Bras 23:167–172Google Scholar
  3. Bellinaso MD, Greer CW, Peralba MD et al (2003) Biodegradation of the herbicide trifluralin by bacteria isolated from soil. FEMS Microbiol Ecol 43:191–194CrossRefGoogle Scholar
  4. Boersma MG, Dinarieva TY, Middelhoven WJ et al (1998) F-19 nuclear magnetic resonance as a tool to investigate microbial degradation of fluorophenols to fluorocatechols and fluoromuconates. Appl Environ Microbiol 64:1256–1263PubMedGoogle Scholar
  5. Boersma MG, Solyanikova IP, Van Berkel WJH et al (2001) F-19 NMR metabolomics for the elucidation of microbial degradation pathways of fluorophenols. J Ind Microbiol Biotechnol 26:22–34CrossRefGoogle Scholar
  6. Boersma FGH, McRoberts WC, Cobb SL et al (2004) A F-19 NMR study of fluorobenzoate biodegradation by Sphingomonas sp HB-1. FEMS Microbiol Lett 237:355–361CrossRefPubMedGoogle Scholar
  7. Cantoreggi S, Keller DA (1997) Pharmacokinetics and metabolism of vinyl fluoride in vivo and in vitro. Toxicol Appl Pharmacol 143:130–139CrossRefPubMedGoogle Scholar
  8. Carvalho MF, Ferreira MIM, Moreira IS et al (2006) Long-term performance and microbial dynamics of an up-flow fixed bed reactor established for the biodegradation of fluorobenzene. Appl Environ Microbiol 71:555–562Google Scholar
  9. Cerniglia CE, Miller DW, Yang SK et al (1984) Effects of a fluoro substituent on the fungal metabolism of 1-fluoronaphthalene. Appl Environ Microbiol 48:294–300PubMedGoogle Scholar
  10. Dave R, Badet B, Meffre P (2003) γ-Fluorinated analogues of glutamic acid and glutamine. Amino Acids 24:245–261CrossRefPubMedGoogle Scholar
  11. Donnelly C, Murphy CD (2007) Bacterial defluorination of 4-fluoroglutamic acid. Appl Microbiol Biotechnol 77:699–703CrossRefPubMedGoogle Scholar
  12. Donnelly C, Murphy CD (2009) Purification and properties of fluoroacetate dehalogenase from Pseudomonas fluorescens DSM 8341. Biotechnol Lett 31:245–250CrossRefPubMedGoogle Scholar
  13. Drzyzga O, Jannsen S, Blotevogel KH (1994) Mineralization of monofluorobenzoate by a diculture under sulfate-reducing conditions. FEMS Microbiol Lett 116:215–219CrossRefPubMedGoogle Scholar
  14. Engesser KH, Cain RB, Knackmuss HJ (1988a) Bacterial metabolism of side-chain fluorinated aromatics—co-metabolism of 3-trifluoromethyl(TFM)-benzoate by Pseudomonas putida (arvilla) mt-2 and Rhodococcus rubropertinctus N657. Arch Microbiol 149:188–197CrossRefPubMedGoogle Scholar
  15. Engesser KH, Rubio MA, Ribbons DW (1988b) Bacterial metabolism of side-chain fluorinated aromatics—co-metabolism of 4-trifluoromethyl(TFM)-benzoate by 4-isopropylbenzoate grown Pseudomonas putida JT strains. Arch Microbiol 149:198–206CrossRefPubMedGoogle Scholar
  16. Engesser KH, Auling G, Busse J et al (1990) 3-Fluorobenzoate enriched bacterial strain FLB-300 degrades benzoate and all 3 isomeric monofluorobenzoates. Arch Microbiol 153:193–199CrossRefGoogle Scholar
  17. Fragoeiro S, Magan N (2005) Enzymatic activity, osmotic stress and degradation of pesticide mixtures in soil extract liquid broth inoculated with Phanerochaete chrysosporium and Trametes versicolor. Environ Microbiol 7:348–355CrossRefPubMedGoogle Scholar
  18. Goldman P (1965) Enzymatic cleavage of carbon-fluorine bond in fluoroacetate. J Biol Chem 240:3434–3438PubMedGoogle Scholar
  19. Green NA, Meharg AA, Till C et al (1999) Degradation of 4-fluorobiphenyl by mycorrhizal fungi as determined by F-19 nuclear magnetic resonance spectroscopy and C-14 radiolabelling analysis. Appl Environ Microbiol 65:4021–4027PubMedGoogle Scholar
  20. Gregg K, Hamdorf B, Henderson K et al (1998) Genetically modified ruminal bacteria protect sheep from fluoroacetate poisoning. Appl Environ Microbiol 64:3496–3498PubMedGoogle Scholar
  21. Gribble GW (2002) Naturally occurring organofluorines. Handb Environ Chem 3N:121–136CrossRefGoogle Scholar
  22. Guha PK, Saha J, Chaudhuri S et al (1995) Investigation on the transformation of fluchloralin by soil fungi—identification of some metabolites. Pestic Sci 44:117–122CrossRefGoogle Scholar
  23. Harper DB, O’Hagan D (1994) The Fluorinated Natural-Products. Nat Prod Rep 11:123–133CrossRefPubMedGoogle Scholar
  24. Heffernan B, Murphy CD, Casey E (2009a) Comparison of planktonic and biofilm cultures of Pseudomonas fluorescens DSM 8341 cells grown on fluoroacetate. Appl Environ Microbiol 75:2899–2907CrossRefPubMedGoogle Scholar
  25. Heffernan B, Murphy CD, Syron E et al (2009b) Treatment of fluoroacetate by a Pseudomonas fluorescens biofilm grown in membrane aerated biofilm reactor. Environ Sci Technol 43:6776–6785CrossRefPubMedGoogle Scholar
  26. Huang FL, Haydock SF, Spiteller D et al (2006) The gene cluster for fluorometabolite biosynthesis in Streptomyces cattleya: A thioesterase confers resistance to fluoroacetyl-coenzyme A. Chem Biol 13:475–484CrossRefPubMedGoogle Scholar
  27. Jitsumori K, Omi R, Kurihara T et al (2009) X-ray crystallographic and mutational studies of fluoroacetate dehalogenase from Burkholderia sp strain FA1. J Bacteriol 191:2630–2637CrossRefPubMedGoogle Scholar
  28. Kamachi T, Nakayama T, Shitamichi O et al (2009) The catalytic mechanism of fluoroacetate dehalogenase: a computational exploration of biological dehalogenation. Chem Eur J 15:7394–7403CrossRefGoogle Scholar
  29. Kawasaki H, Miyoshi K, Tonomura K (1981) Purification, crystallization and properties of haloacetate halidohydrolase from Pseudomonas species. Agric Biol Chem 45:543–544Google Scholar
  30. Kelly M (1965) Isolation of bacteria able to metabolize fluoroacetate or fluoracetamide. Nature 208:809–810CrossRefPubMedGoogle Scholar
  31. Keuning S, Janssen DB, Witholt B (1985) Purification and characterization of hydrolytic haloalkane dehalogenase from Xanthobacter autotrophicus gj10. J Bacteriol 163:635–639PubMedGoogle Scholar
  32. Key BD, Howell RD, Criddle CS (1997) Fluorinated organics in the biosphere. Environ Sci Technol 31:2445–2454CrossRefGoogle Scholar
  33. Kim BR, Suidan MT, Wallington TJ et al (2000) Biodegradability of trifluoroacetic acid. Environ Eng Sci 17:337–342CrossRefGoogle Scholar
  34. King DR, Oliver AJ, Mead RJ (1978) Adaptation of some western Australian mammals to food plants containing fluoroacetate. Aust J Zool 26:699–712CrossRefGoogle Scholar
  35. Kirsten E, Sharma ML, Kun E (1978) Molecular toxicology of (−)-erythro-fluorocitrate—selective inhibition of citrate transport in mitochondria and binding of fluorocitrate to mitochondrial proteins.15. Mol Pharmacol 14:172–184PubMedGoogle Scholar
  36. Kramer C, Kreisel G, Fahr K et al (2004) Degradation of 2-fluorophenol by the brown-rot fungus Gloeophyllum striatum: evidence for the involvement of extracellular Fenton chemistry. Appl Microbiol Biotechnol 64:387–395CrossRefPubMedGoogle Scholar
  37. Kurihara T, Yamauchi T, Ichiyama S et al (2003) Purification, characterization, and gene cloning of a novel fluoroacetate dehalogenase from Burkholderia sp FA1. J Mol Catal B Enzym 23:347–355CrossRefGoogle Scholar
  38. Lewandowski G, Meissner E, Milchert E (2006) Special applications of fluorinated organic compounds. J Hazard Mat 136:385–391CrossRefGoogle Scholar
  39. Liu JQ, Kurihara T, Ichiyama S et al (1998) Reaction mechanism of fluoroacetate dehalogenase from Moraxella sp. B. J Biol Chem 273:30897–30902CrossRefPubMedGoogle Scholar
  40. Lui J, Lee LS, Nies LF et al (2007) Biotransformation of 8:2 fluorotelomer alcohol in soil and by soil bacteria isolates. Environ Sci Technol 41:8024–8030CrossRefGoogle Scholar
  41. McCulloch A (2003) Fluorocarbons in the global environment: a review of the important interactions with atmospheric chemistry and physics. J Fluorine Chem 123:21–29CrossRefGoogle Scholar
  42. Mouttaki H, Nanny MA, McInerney MJ (2009) Metabolism of hydroxylated and fluorinated benzoates by Syntrophus aciditrophicus and detection of a fluorodiene metabolite. Appl Environ Microbiol 75:998–1004CrossRefPubMedGoogle Scholar
  43. Murphy CD (2007) Fluorophenol oxidation by a fungal chloroperoxidase. Biotechnol Lett 29:45–49CrossRefPubMedGoogle Scholar
  44. Murphy CD, Quirke S, Balogun O (2008) Degradation of fluorobiphenyl by Pseudomonas pseudoalcaligenes KF707. FEMS Microbiol Lett 286:45–49CrossRefPubMedGoogle Scholar
  45. O’Hagan D, Schaffrath C, Cobb SL et al (2002) Biosynthesis of an organofluorine molecule—a fluorinase enzyme has been discovered that catalyses carbon-fluorine bond formation. Nature 416:279CrossRefPubMedGoogle Scholar
  46. Oltmanns RH, Muller R, Otto MK et al (1989) Evidence for a new pathway in the bacterial degradation of 4-fluorobenzoate. Appl Environ Microbiol 55:2499–2504PubMedGoogle Scholar
  47. Osborne RL, Raner GM, Hager LP et al (2006) C. fumago chloroperoxidase is also a dehaloperoxidase: oxidative dehalogenation of halophenols. J Am Chem Soc 128:1036–1037CrossRefPubMedGoogle Scholar
  48. Osuna MB, Sipma J, Emanuelsson MAE et al (2008) Biodegradation of 2-fluorobenzoate and dichloromethane under simultaneous and sequential alternating pollutant feeding. Water Res 42:3857–3869CrossRefPubMedGoogle Scholar
  49. Parsons JR, Sáez M, Dolfing J et al (2008) Biodegradation of perfluorinated compounds. Rev Environ Contam Toxicol 196:53–71PubMedGoogle Scholar
  50. Peelen S, Rietjens I, Boersma MG et al (1995) Conversion of phenol derivatives to hydroxylated products by phenol hydroxylase from Trichosporon cutaneum—a comparison of regioselectivity and rate of conversion with calculated molecular orbital substrate characteristics. Eur J Biochem 227:284–291CrossRefPubMedGoogle Scholar
  51. Peters R, Wakelin RW, Buffa P et al (1953) Biochemistry of fluoroacetate poisoning—the isolation and some properties of the fluorotricarboxylic acid inhibitor of citrate metabolism. Proc Roy Soc Lond B 140:497–506CrossRefGoogle Scholar
  52. Prenafeta-Boldu FX, Luykx D, Vervoort J et al (2001) Fungal metabolism of toluene: monitoring of fluorinated analogs by F-19 nuclear magnetic resonance spectroscopy. Appl Environ Microbiol 67:1030–1034CrossRefPubMedGoogle Scholar
  53. Reinscheid UM, Zuilhof H, Muller R et al (1998) Biological, thermal and photochemical transformation of 2-trifluoromethylphenol. Biodegradation 9:487–499CrossRefGoogle Scholar
  54. Schlomann M, Fischer P, Schmidt E et al (1990) Enzymatic formation, stability, and spontaneous reactions of 4-fluoromuconolactone, a metabolite of the bacterial degradation of 4-fluorobenzoate. J Bacteriol 172:5119–5129PubMedGoogle Scholar
  55. Schmidt S, Fortnagel P, Wittich RM (1993) Biodegradation and transformation of 4,4′-dihalodiphenyl and 2,4-dihalodiphenyl ethers by Sphingomonas sp strain SS33. Appl Environ Microbiol 59:3931–3933PubMedGoogle Scholar
  56. Seeger M, Camara B, Hofer B (2001) Dehalogenation, denitration, dehydroxylation, and angular attack on substituted biphenyls and related compounds by a biphenyl dioxygenase. J Bacteriol 183:3548–3555CrossRefPubMedGoogle Scholar
  57. Seibert V, Thiel M, Hinner I-S et al (2004) Characterization of a gene cluster encoding the maleylacetate reductase from Ralstonia eutropha 335T, an enzyme recruited for growth with 4-fluorobenzoate. Microbiology (UK) 150:463–472CrossRefGoogle Scholar
  58. Selesi D, Meckenstock RU (2009) Anaerobic degradation of the aromatic hydrocarbon biphenyl by a sulfate-reducing enrichment culture. FEMS Microbiol Ecol 68:86–93CrossRefPubMedGoogle Scholar
  59. Taylor AE, Dolan ME, Bottomley PJ et al (2007) Utilization of fluoroethene as a surrogate for aerobic vinyl chloride transformation. Environ Sci Technol 41:6378–6383CrossRefPubMedGoogle Scholar
  60. Travkin VM, Solyanikova IP, Rietjens I et al (2003) Degradation of 3,4-dichloro- and 3,4-difluoroaniline by Pseudomonas fluorescens 26-K. J Environ Sci Health B 38:121–132CrossRefPubMedGoogle Scholar
  61. Tu LQ, Chen YY, Wright PFA et al (2005) Characterization of the fluoroacetate detoxication enzymes of rat liver cytosol. Xenobiotica 35:989–1002CrossRefPubMedGoogle Scholar
  62. Tu LQ, Wright PFA, Rix CJ et al (2006) Is fluoroacetate-specific defluorinase a glutathione S-transferase? Comp Biochem Physiol C 143:59–66Google Scholar
  63. Vargas C, Song B, Camps M et al (2000) Anaerobic degradation of fluorinated aromatic compounds. Appl Microbiol Biotechnol 53:342–347CrossRefPubMedGoogle Scholar
  64. Visscher PT, Culbertson CW, Oremland RS (1994) Degradation of trifluoroacetate in oxic and anoxic sediments. Nature 369:729–731CrossRefGoogle Scholar
  65. Walker JRL, Lien BC (1981) Metabolism of fluoroacetate by a soil Pseudomonas sp and Fusarium solani. Soil Biol Biochem 13:231–235CrossRefGoogle Scholar
  66. Wang N, Szostek B, Folsom PW et al (2005) Aerobic biotransformation of 14C-labeled 8-2 fluorotelomer alcohol by activated sludge from a domestic sewage treatment plant. Environ Sci Technol 39:531–538CrossRefPubMedGoogle Scholar
  67. Wang N, Szostek B, Buck RC et al (2009) 8-2 Fluorotelomer alcohol aerobic soil biodegradation: Pathways, metabolites and metabolite yields. Chemosphere 75:1089–1096CrossRefPubMedGoogle Scholar
  68. Zablotowicz RM, Schrader KK, Locke MA (1998) Algal transformation of fluometuron and atrazine by N-dealkylation. J Environ Sci Health B 33:511–528CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.School of Biomolecular and Biomedical Science, Centre for Synthesis and Chemical Biology, Ardmore HouseUniversity College DublinDublin 4Ireland

Personalised recommendations