Biotechnology Letters

, 31:1867 | Cite as

Improved ethanol tolerance in Escherichia coli by changing the cellular fatty acids composition through genetic manipulation

  • Lian Hua Luo
  • Pil-Soo Seo
  • Jeong-Woo Seo
  • Sun-Yeon Heo
  • Dae-Hyuk Kim
  • Chul Ho Kim
Original Research Paper

Abstract

To investigate the effect of cellular fatty acids composition on ethanol tolerance in Escherichia coli, we overexpressed either des, encoding fatty acid desaturase from Bacillus subtilis, or fabA, encoding β-hydroxydecanoyl thio-ester dehydrase from E. coli, or both genes together, into E. coli. Recombinant E. coli harboring fabA had elevated tolerance against ethanol compared to wild type strain. In contrast, des decreased resistance to ethanol. Co-expression of both genes together complemented ethanol tolerance of E. coli. This result indicates how to engineer bacterial strains to be resistant to higher concentrations of ethanol.

Keywords

Escherichia coli Fatty acids composition Ethanol tolerance Desaturase fabA 

Supplementary material

10529_2009_92_MOESM1_ESM.doc (50 kb)
Supplementary material (DOC 50 kb)

References

  1. Aguilar PS, Cronan JE, de Mendoza D (1998) A Bacillus subtilis gene induced by cold shock encodes a membrane phospholipid desaturase. J Bacteriol 180:2194–2200PubMedGoogle Scholar
  2. Bonamor A, Macone A, Colotti G, Matarese RM, Boffi A (2006) The desaturase from Bacillus subtilis, a promising tool for the selective olefination of phospholipids. J Biotechnol 121:49–53CrossRefGoogle Scholar
  3. Carey VC, Ingram LO (1983) Lipid composition of Zymomonas mobilis: effects of ethanol and glucose. J Bacteriol 154:1291–1300PubMedGoogle Scholar
  4. Clark DP, DeMendoza D, Polacco ML, Cronan JE (1983) β-hydroxydecanoyl thio ester dehydrase does not catalyze a rate-limiting step in Escherichia coli unsaturated fatty acid synthesis. Biochemistry 22:5897–5902CrossRefPubMedGoogle Scholar
  5. Heath RJ, Rock CO (1996) Roles of the FabA and FabZ β-hydroxyacyl-acyl carrier protein dehydratases in Escherichia coli fatty acid biosynthesis. J Biol Chem 271:27795–27801CrossRefPubMedGoogle Scholar
  6. Ingram LO (1976) Adaptation of membrane lipids to alcohols. J Bacteriol 125:670–678PubMedGoogle Scholar
  7. Ingram LO, Vreeland NS, Eaton LC (1980) Alcohol tolerance in Escherichia coli. Pharmacol Biochem Behav 13(Suppl 1):191–195PubMedGoogle Scholar
  8. Kajiwara S, Shirai A, Fujii T, Toguri T, Nakamura K, Ohtaguchi K (1996) Polyunsaturated fatty acid biosynthesis in Saccharomyces cerevisiae: expression of ethanol tolerance and the FAD2 gene from Arabidopsis thaliana. Appl Environ Microbiol 62:4309–4313PubMedGoogle Scholar
  9. Uchida K (1974) Lipids of alcoholophilic Lactobacilli II. Occurrence of polar lipids with unusually long acyl chains in Lactobacillus heterohiochii. Biochim Biophys Acta 369:146–155PubMedGoogle Scholar
  10. You KM, Rosenfield CL, Knipple DC (2003) Ethanol tolerance in the yeast Saccharomyces cerevisiae is dependent on cellular oleic acid content. Appl Environ Microbiol 69:1499–1503CrossRefPubMedGoogle Scholar
  11. Zhang YM, Rock CO (2008) Membrane lipid homeostasis in bacteria. Nat Rev Microbiol 6:222–233CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Lian Hua Luo
    • 1
    • 2
  • Pil-Soo Seo
    • 1
  • Jeong-Woo Seo
    • 1
  • Sun-Yeon Heo
    • 1
  • Dae-Hyuk Kim
    • 2
  • Chul Ho Kim
    • 1
  1. 1.Molecular Bioprocess Research CenterJeonbuk Branch InstituteJeonbukSouth Korea
  2. 2.Institute for Molecular Biology and Genetics, Research Center of Bioactive MaterialsChonbuk National UniversityChonbukSouth Korea

Personalised recommendations