Biotechnology Letters

, Volume 31, Issue 10, pp 1505–1509 | Cite as

Biological synthesis of platinum nanoparticles with apoferritin

  • Q. Y. Deng
  • B. Yang
  • J. F. Wang
  • C. G. Whiteley
  • X. N. Wang
Original Research Paper

Abstract

A novel biological method for the synthesis of platinum nanoparticles using the horse spleen apoferritin (HSAF) is reported. When HSAF was incubated with K2PtCl6 at 23°C) for 48 h followed by subsequent reduction with NaBH4 it resulted in the formation of spherical platinum nanoparticles, size 4.7 ± 0.9 nm, with narrow particle size distribution confirmed by transmission electron microscopy and energy dispersive X-ray analysis. As the initial platinum concentration increased through 0.155, 0.31, 0.465 to 0.62 mM the efficiency of its removal from solution by the apoferritin was 99, 99, 84 and 71% respectively. The maximum uptake of platinum salt per mM apoferritin was estimated at 12.7 mmol l−1 h−1. These results clearly indicate that the HSAF protein cage can successfully serve as a suitable size-constrained support matrix for the biological synthesis of platinum nanoparticles.

Keywords

Apoferritin Nanoparticles Platinum Size-controlled synthesis 

References

  1. Bulte JWM, Douglas T, Mann S, Frankel RB, Moskowitz BM, Brooks RA, Baumgarner CD, Vymazal J, Strub MP, Frank JA (2005) Magnetoferritin: characterization of a novel superparamagnetic MR contrast agent. J Magn Reson Imaging 22:497–505Google Scholar
  2. Chasteen ND, Harrision PM (1999) Mineralization in ferritin: An efficient means of iron storage. J Struct Biol 126:182–187PubMedCrossRefGoogle Scholar
  3. Douglas T, Dickson DPE, Betteridge S, Charnock J, Garner CD, Mann S (1995) Synthesis and structure of an iron(III) sulfide-ferritin bioinorganic nanocomposite. Science 269:54–57PubMedCrossRefGoogle Scholar
  4. Ensign D, Young M, Douglas T (2004) Photocatalytic synthesis of copper colloids from Cu (II) by the ferrihydrite core of ferritin. Inorg Chem 43:441–445CrossRefGoogle Scholar
  5. Gálvez N, Fernandez B, Valero E, Sánchez P, Cuesta R, Domínguez-Vera JM (2008) Apoferritin as a nanoreactor for preparing metallic nanoparticles. Comptes rendus Chimie 11:1207–1212CrossRefGoogle Scholar
  6. Govender Y, Riddin T, Gericke M, Whiteley CG (2009a) On the enzymatic formation of platinum nanoparticles. J Nanopart Res. DOI: 10.1007/s11051-009-9604-3
  7. Govender Y, Riddin T, Gericke M, Whiteley CG (2009b) Bioreduction of platinum salt into nanoparticles: A mechanistic perspective. Biotechnol Lett 31:95–100PubMedCrossRefGoogle Scholar
  8. Granier T, Gallois B, Dautant A, Estaintot BLD, Precigoux G (1997) Comparison of the structures of the cubic and tetragonal forms of horse-spleen apoferritin. Acta Crystallogr D 53:580–587Google Scholar
  9. Huang J, He C, Liu X, Xiao Y, Mya KY, Chai J (2004) Formation and characterization of water-soluble platinum nanoparticles using a unique approach based on the hydrosilylation reaction. Langmuir 20:5145–5148PubMedCrossRefGoogle Scholar
  10. Iwahori K, Yoshizawa K, Muraoka M, Yamashita I (2005) Fabrication of ZnSe nanoparticles in the apoferritin cavity by designing a slow chemical reaction. Inorg Chem 44:6393–6397PubMedCrossRefGoogle Scholar
  11. Lee SW, Mao C, Flynn CE, Belcher AM (2002) Ordering of quantum dots using genetically engineered viruses. Science 296:892–895PubMedCrossRefGoogle Scholar
  12. Liu Z, Ling XY, Su X, Lee JY (2004) Carbon-supported Pt and PtRu nanoparticles as catalysts for a direct methanol fuel cell. J Phys Chem B 108:8234–8240CrossRefGoogle Scholar
  13. Mann S, Meldrum FC (1991) Controlled synthesis of inorganic materials using supramolecular assemblies. Adv Mater 3:316–321CrossRefGoogle Scholar
  14. Meldrum FC, Wade VJ, Nimmo DL, Heywood BR, Mann S (1991) Synthesis of inorganic nanophase materials in supramolecular protein cages. Nature 349:684–690CrossRefGoogle Scholar
  15. Meldrum FC, Douglas T, Levi S, Arosio P, Mann S (1995) Reconstitution of manganese oxide cores in horse spleen and recombinant ferritins. J Inorg Biochem 58:59–68PubMedCrossRefGoogle Scholar
  16. Okuda M, Iwahori K, Yamashita I, Yoshimura H (2003) Fabrication of nickel and chromium nanoparticles using the protein cage of apoferritin. Biotech Bioeng 84:187–193CrossRefGoogle Scholar
  17. Okuda M, Kobayashi Y, Suzuki K, Sonoda K, Kondoh T, Wagawa A, Kondo A, Yoshimura H (2005) Self-organized inorganic nanoparticle arrays on protein lattices. Nano Lett 5:991–1000PubMedCrossRefGoogle Scholar
  18. Rashamuse KJ, Whiteley CG (2007) Bioreduction of Pt (IV) from aqueous solution using sulphate reducing bacteria. Appl Micro Biotech 75:1429–1435CrossRefGoogle Scholar
  19. Rashamuse KJ, Mutambanengwe CCZ, Whiteley CG (2008) Enzymatic recovery of platinum (IV) from industrial wastewater using a Biosulphidogenic hydrogenase. Afr J Biotech 7:1087–1095Google Scholar
  20. Riddin TL, Gericke M, Whiteley CG (2006) Analysis of the inter- and extracellular formation of platinum nanoparticles by Fusarium oxysporum f. sp lycopersici using response surface methodology. Nanotechnology 17:3482–3489PubMedCrossRefGoogle Scholar
  21. Sun Y, Xia Y (2002) Shape-controlled synthesis of gold and silver nanoparticles. Science 298:2176–2182PubMedCrossRefGoogle Scholar
  22. Theil EC (2001) Ferritin. In: Messerschmidt A, Huber R, Poulos T, Wieghardt K (eds) Handbook of Metalloproteins, vol 2. Wiley, New York, pp 771–781Google Scholar
  23. Uchida M, Klem MT, Allen M, Suci P, Flenniken M, Gillitzer E, Varpness Z, Liepold LO, Young M, Douglas T (2007) Biological containers: protein cages as multifunctional nanoplatforms. Adv Mater 19:1025–1042CrossRefGoogle Scholar
  24. Ueno T, Suzuki M, Goto T, Matsumoto T, Nagayama K, Watanabe Y (2004) Size-selective olefin hydrogenation by a Pd nanocluster provided in an apo-ferritin cage. Angew Chem Int Ed 43:2527–2530CrossRefGoogle Scholar
  25. Yu YT, Xu BQ (2003) Effect of precursor hydrolysis on shape-controlled synthesis of Pt nanocrystals. Acta Chimica Sinica 6:1758–1764Google Scholar
  26. Zhang B, Harb JN, Davis RC, Kim JW, Chu SH, Choi S, Miller T, Watt GD (2005) Kinetic and thermodynamic characterization of the cobalt and manganese oxyhydroxide cores formed in horse spleen ferritin. Inorg Chem 44:3738–3745PubMedCrossRefGoogle Scholar
  27. Zhang B, Harb JN, Davis RC, Choi S, Kim JW, Miller T, Chu SH, Watt GD (2006) Electron exchange between Fe(II)-horse spleen ferritin and Co(III)/Mn(III) reconstituted horse spleen and azotobacter vinelandii ferritins. Biochemistry 45:5766–5774PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Q. Y. Deng
    • 1
  • B. Yang
    • 1
  • J. F. Wang
    • 1
  • C. G. Whiteley
    • 1
    • 2
  • X. N. Wang
    • 1
  1. 1.School of Biosciences and BioengineeringSouth China University of TechnologyGuangzhouPeople’s Republic of China
  2. 2.Department of Biochemistry, Microbiology and BiotechnologyRhodes UniversityGrahamstownSouth Africa

Personalised recommendations