Advertisement

Biotechnology Letters

, Volume 30, Issue 12, pp 2191–2198 | Cite as

Over-expression of OsDREB genes lead to enhanced drought tolerance in rice

  • Jian-Qiang Chen
  • Xiu-Ping Meng
  • Yun Zhang
  • Mian Xia
  • Xi-Ping Wang
Original Research Paper

Abstract

The DREB transcription factors, which specifically interact with C-repeat/DRE (A/GCCGAC), play an important role in plant abiotic stress tolerance by controlling the expression of many cold or/and drought-inducible genes in an ABA-independent pathway. We have isolated three novel rice DREB genes, OsDREB1E, OsDREB1G, and OsDREB2B, which are homologous to Arabidopsis DREB genes. The yeast one-hybrid assay indicated that OsDREB1E, OsDREB1G, and OsDREB2B can specifically bind to the C-repeat/DRE element. To elucidate the function of respective OsDREB genes, we have stably introduced these to rice by Agrobacterium-mediated transformation. Transgenic rice plants analysis revealed that over-expression of OsDREB1G and OsDREB2B in rice significantly improved their tolerance to water deficit stress, while over-expression of OsDREB1E could only slightly improved the tolerance to water deficit stress, suggesting that the OsDREBs might participate in the stress response pathway in different manners.

Keywords

Drought OsDREB Rice Transcription factors 

Notes

Acknowledgments

The authors thank Dr Fan Chen (Institute of Genetics and Developmental Biology, Chinese Academy of Sciences) for providing the vectors of pHisi-1 and pLacZi. We also thank Dr. Junli Zhou and Dr. Chengcai Chu for critical reading of the manuscript. This research is supported by a grant of Chinese National Nature Science Foundation (30770211) and by the 863 High-tech Project from the Ministry of Science and Technology of China (2007AA10Z185).

Supplementary material

10529_2008_9811_MOESM1_ESM.doc (40 kb)
(DOC 40 kb)

References

  1. Agarwal PK, Agarwal P, Reddy MK, Sopory SK (2006) Role of DREB transcription factors in abiotic and biotic stress tolerance in plants. Plant Cell Rep 25:1263–1274PubMedCrossRefGoogle Scholar
  2. Dubouzet JG, Sakuma Y, Ito Y, Kasuga M, Dubouzet EG, Miura S, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt- and cold-responsive gene expression. Plant J 33:751–763PubMedCrossRefGoogle Scholar
  3. Hsieh TH, Lee JT, Charng YY, Chan MT (2002) Tomato plants ectopically expressing Arabidopsis CBF1 show enhanced resistance to water deficit stress. Plant Physiol 130:618–626PubMedCrossRefGoogle Scholar
  4. Ingram J, Bartels D (1996) The molecular basis of dehydration tolerance in plants. Annu Rev Plant Physiol Plant Mol Biol 47:377PubMedCrossRefGoogle Scholar
  5. Ito Y, Katsura K, Maruyama K, Taji T, Kobayashi M, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2006) Functional analysis of rice DREB1/CBF-type transcription factors involved in cold-responsive gene expression in transgenic rice. Plant Cell Physiol 47:141–153PubMedCrossRefGoogle Scholar
  6. Jaglo KR, Kleff S, Amundsen KL, Zhang X, Haake V, Zhang JZ, Deits T, Thomashow MF (2001) Components of the Arabidopsis C-repeat/dehydration-responsive element binding factor cold-response pathway are conserved in Brassica napus and other plant species. Plant Physiol 127:910–917PubMedCrossRefGoogle Scholar
  7. James VA, Neibaur I, Altpeter F (2008) Stress inducible expression of the DREB1A transcription factor from xeric, Hordeum spontaneum L. in turf and forage grass (Paspalum notatum Flugge) enhances abiotic stress tolerance. Transgenic Res 17:93–104PubMedCrossRefGoogle Scholar
  8. Kim HJ, Hyun Y, Park JY, Park MJ, Park MK, Kim MD, Kim HJ, Lee MH, Moon J, Lee I, Kim J (2004) A genetic link between cold responses and flowering time through FVE in Arabidopsis thaliana. Nat Genet 36:167–171PubMedCrossRefGoogle Scholar
  9. Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1998) Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell 10:1391–1406PubMedCrossRefGoogle Scholar
  10. Liu X, Bai X, Wang X, Chu C (2007) OsWRKY71, a rice transcription factor, is involved in rice defense response. J Plant Physiol 164:969–979PubMedCrossRefGoogle Scholar
  11. Medina J, Bargues M, Terol J, Perez-Alonso M, Salinas J (1999) The Arabidopsis CBF gene family is composed of three genes encoding AP2 domain-containing proteins whose expression is regulated by low temperature but not by abscisic acid or dehydration. Plant Physiol 119:463–469PubMedCrossRefGoogle Scholar
  12. Oh SJ, Song SI, Kim YS, Jang HJ, Kim SY, Kim M, Kim YK, Nahm BH, Kim JK (2005) Arabidopsis CBF3/DREB1A and ABF3 in transgenic rice increased tolerance to abiotic stress without stunting growth. Plant Physiol 138:341–351PubMedCrossRefGoogle Scholar
  13. Pellegrineschi A, Reynolds M, Pacheco M, Brito RM, Almeraya R, Yamaguchi-Shinozaki K, Hoisington D (2004) Stress-induced expression in wheat of the Arabidopsis thaliana DREB1A gene delays water stress symptoms under greenhouse conditions. Genome 47:493–500PubMedCrossRefGoogle Scholar
  14. Qin F, Sakuma Y, Li J, Liu Q, Li YQ, Shinozaki K, Yamagushi-Shinozaki KY (2004) Cloning and functional analysis of a novel DREB1/CBF transcription factor involved in cold-responsive gene expression in Zea mays L. Plant Cell Physiol 45:1042–1052PubMedCrossRefGoogle Scholar
  15. Riechmann JL, Meyerowitz EM (1998) The AP2/EREBP family of plant transcription factors. Biol Chem 379:633–646PubMedCrossRefGoogle Scholar
  16. Sakuma Y, Maruyama K, Osakabe Y, Qin F, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2006) Functional analysis of an Arabidopsis transcription factor, DREB2A, involved in drought-responsive gene expression. Plant Cell 18:1292–1309PubMedCrossRefGoogle Scholar
  17. Shen YG, Zhang WK, He SJ, Zhang JS, Liu Q, Chen SY (2003) An EREBP/AP2-type protein in Triticum aestivum was a DRE-binding transcription factor induced by cold, dehydration and ABA stress. Theor Appl Genet 106:923–930PubMedGoogle Scholar
  18. Shinozaki K, Yamaguchi-Shinozaki K (2000) Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signaling pathways. Curr Opin Plant Biol 3:217–223PubMedGoogle Scholar
  19. Shinozaki K, Yamaguchi-Shinozaki K, Seki M (2003) Regulatory network of gene expression in the drought and cold stress responses. Curr Opin Plant Biol 6:410–417PubMedCrossRefGoogle Scholar
  20. Stockinger EJ, Gilmour SJ, Thomashow MF (1997) Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc Natl Acad Sci USA 94:1035–1040PubMedCrossRefGoogle Scholar
  21. Tian XH, Li XP, Zhou HL, Zhang JS, Gong ZZ, Chen SY (2005) OsDREB4 genes in rice encode AP2-containing proteins that bind specifically to the dehydration-responsive element. J Integr Plant Biol 47:467–476CrossRefGoogle Scholar
  22. Wang Q, Guan Y, Wu Y, Chen H, Chen F, Chu C (2008) Overexpression of a rice OsDREB1F gene increases salt, drought, and low temperature tolerance in both Arabidopsis and rice. Plant Mol Biol 67:589–602PubMedCrossRefGoogle Scholar
  23. Xue GP (2002) An AP2 domain transcription factor HvCBF1 activates expression of cold-responsive genes in barley through interaction with a (G/a)(C/t)CGAC motif. BBA-Gene Struct Expr 1577:63–72Google Scholar
  24. Yamaguchi-Shinozaki K, Shinozaki K (1994) A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. Plant Cell 6:251–264PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Jian-Qiang Chen
    • 1
    • 2
  • Xiu-Ping Meng
    • 3
  • Yun Zhang
    • 3
  • Mian Xia
    • 3
  • Xi-Ping Wang
    • 1
    • 2
    • 3
  1. 1.College of Life SciencesBeijing Normal UniversityBeijingPeople’s Republic of China
  2. 2.School of Life SciencesFudan UniversityShanghaiPeople’s Republic of China
  3. 3.National Center for Molecular Crop Design, Weiming Kaituo Agriculture Biotech Co., LtdBeijingPeople’s Republic of China

Personalised recommendations