Advertisement

Biotechnology Letters

, Volume 30, Issue 11, pp 1947–1951 | Cite as

Energy recovery from energy rich vegetable products with microbial fuel cells

  • Peter Clauwaert
  • David van der Ha
  • Willy Verstraete
Original Research Paper

Abstract

Two types of rapidly biodegradable vegetable products (the liquid fraction of clover and the glycerol-containing sidestream from biodiesel production) were selected for anodic oxidation in microbial fuel cells (MFC) equipped with a biocathode. As benchmark references, five abundant amino-acids in plant sap (l-glutamine, l-glutamic acid, l-asparagine, l-aspartic acid and l-alanine) were tested separately. Their performance was in the same order of magnitude of clover sap oxidation (145–225 A m−3 MFC; 39–95 W m−3 MFC). Glycerol oxidation resulted in competitive current and power outputs (111 A m−3 MFC; 23 W m−3 MFC).

Keywords

Bio-electrochemical systems Bioenergy Biological cathode Glycerol Vegetable substrate 

Notes

Acknowledgements

The useful comments of Peter Aelterman, Hai The Pham and Tuba Hande Ergüder are kindly acknowledged. This research was funded by a Ph.D grant (IWT Grant 53305) of the Institute for the Promotion of Innovation through Science and Technology in Flanders (IWT-Vlaanderen).

References

  1. Aelterman P, Rabaey K, Clauwaert P, Verstraete W (2006) Microbial fuel cells for wastewater treatment. Water Sci Technol 54:9–15PubMedGoogle Scholar
  2. Amiard W, Morvan-Bertrand A, Cliquet JB, Billard JP, Huault C, Sandstrom JP, Prud’homme MP (2004) Carbohydrate and amino acid composition in phloem sap of Lolium perenne L. before and after defoliation. Can Bot (Rev Can Botanique) 82:1594–1601CrossRefGoogle Scholar
  3. Catal T, Li K, Bermek H, Liu H (2008) Electricity production from twelve monosaccharides using microbial fuel cells. J Power Sources 175:196–200CrossRefGoogle Scholar
  4. Cheng S, Logan BE (2007) Sustainable and efficient biohydrogen production via electrohydrogenesis. Proc Natl Acad Sci USA 104:18871–18873PubMedCrossRefGoogle Scholar
  5. Clauwaert P, Rabaey K, Aelterman P, DeSchamphelaire L, Pham TH, Boeckx P, Boon N, Verstraete W (2007a) Biological denitrification in microbial fuel cells. Environ Sci Technol 41:3354–3360PubMedCrossRefGoogle Scholar
  6. Clauwaert P, Van der Ha D, Boon N, Verbeken K, Verhaege M, Rabaey K, Verstraete W (2007b) Open air biocathode enables effective electricity generation with microbial fuel cells. Environ Sci Technol 41:7564–7569PubMedCrossRefGoogle Scholar
  7. Clauwaert P, Aelterman P, Pham TH, De Schamphelaire L, Carballa M, Rabaey K, Verstraete W (2008) Minimizing losses in bio-electrochemical systems: the road to applications. Appl Microbiol Biotechnol in pressGoogle Scholar
  8. Du ZW, Li HR, Gu TY (2007) A state of the art review on microbial fuel cells: a promising technology for wastewater treatment and bioenergy. Biotechnol Adv 25:464–482PubMedCrossRefGoogle Scholar
  9. Emde R, Swain A, Schink B (1989) Anaerobic oxidation of glycerol by Escherichia-Coli in an amperometric poised-potential culture system. Appl Microbiol Biotechnol 32:170–175CrossRefGoogle Scholar
  10. Fukumorita T, Chino M (1982) Sugar, amino-acid and inorganic contents in rice phloem sap. Plant Cell Physiol 23:273–283Google Scholar
  11. Girousse C, Bonnemain JL, Delrot S, Bournoville R (1991) Sugar and amino-acid-composition of phloem sap of medicago-sativa—a comparative-study of 2 collecting methods. Plant Physiol Biochem 29:41–48Google Scholar
  12. He Z, Wagner N, Minteer SD, Angenent LT (2006) An upflow microbial fuel cell with an interior cathode: assessment of the internal resistance by impedance spectroscopy. Environ Sci Technol 41:5212–5217CrossRefGoogle Scholar
  13. Kim JR, Jung SH, Regan JM, Logan BE (2007) Electricity generation and microbial community analysis of alcohol powered microbial fuel cells. Biores Technol 98(13):2568–2577CrossRefGoogle Scholar
  14. Logan BE, Regan JM (2006) Microbial challenges and applications. Environ Sci Technol 40:5172–5180PubMedCrossRefGoogle Scholar
  15. Logan BE, Cheng S, Watson V, Estadt G (2007) Graphite fiber brush anodes for increased power production in air-cathode microbial fuel cells. Environ Sci Technol 41:3341–3346PubMedCrossRefGoogle Scholar
  16. Rabaey K, Verstraete W (2005) Microbial fuel cells: novel biotechnology for energy generation. Trends Biotechnol 23:291–298PubMedCrossRefGoogle Scholar
  17. Rabaey K, Clauwaert P, Aelterman P, Verstraete W (2005a) Tubular microbial fuel cells for efficient electricity generation. Environ Sci Technol 39:8077–8082PubMedCrossRefGoogle Scholar
  18. Rabaey K, Ossieur W, Verhaege M, Verstraete W (2005b) Continuous microbial fuel cells convert carbohydrates to electricity. Water Sci Technol 52:515–523PubMedGoogle Scholar
  19. Rabaey K, Rodríguez J, Blackall LL, Keller J, Gross P, Batstone D, Verstraete W, Nealson KH (2007) Microbial ecology meets electrochemistry: electricity-driven and driving communities. ISME J 1:9–18PubMedCrossRefGoogle Scholar
  20. Rozendal RA, Hamelers HVM, Euverink GJW, Metz SJ, Buisman CJN (2006) Principle and perspectives of hydrogen production through biocatalyzed electrolysis. Int J Hydrogen Energy 31:1632–1640CrossRefGoogle Scholar
  21. Stuckel JG, Low NH (1996) The chemical composition of 80 pure maple syrup samples produced in North America. Food Res Int 29:373–379CrossRefGoogle Scholar
  22. Van Bel AJE (2003) The phloem, a miracle of ingenuity. Plant Cell Environ 26:125–149CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Peter Clauwaert
    • 1
  • David van der Ha
    • 1
  • Willy Verstraete
    • 1
  1. 1.Laboratory of Microbial Ecology and Technology (LabMET)Ghent UniversityGhentBelgium

Personalised recommendations