Biotechnology Letters

, Volume 30, Issue 9, pp 1525–1536 | Cite as

The technology of microalgal culturing

  • Niels T. EriksenEmail author


This review outlines the current status and recent developments in the technology of microalgal culturing in enclosed photobioreactors. Light distribution and mixing are the primary variables that affect productivities of photoautotrophic cultures and have strong impacts on photobioreactor designs. Process monitoring and control, physiological engineering, and heterotrophic microalgae are additional aspects of microalgal culturing, which have gained considerable attention in recent years.


Heterotrophic microalgae Light distribution Mixing Monitoring and control Photobioreactors Physiological engineering 


  1. Akkerman I, Janssen M, Rocha J, Wijffels HR (2002) Photobiological hydrogen production: photochemical efficiency and bioreactor design. Int J Hydrogen Energy 27:1195–1208CrossRefGoogle Scholar
  2. Barbosa MJ, Albrecht M, Wijffels RH (2003a) Hydrodynamic stress and lethal events in sparged microalgae cultures. Biotechnol Bioeng 83:112–120PubMedCrossRefGoogle Scholar
  3. Barbosa MJ, Janssen M, Ham N, Tramper J, Wijffels RH (2003b) Microalgae cultivation in air-lift reactors: Modelling biomass yield and growth rate as a function of mixing frequency. Biotechnol Bioeng 82:170–179PubMedCrossRefGoogle Scholar
  4. Berberoglu H, Yin J, Pilon L (2007) Light transfer in bubble sparged photobioreactors for H2 production and CO2 mitigation. Int J Hydrogen Energy 32:2273–2285CrossRefGoogle Scholar
  5. Bosma R, van Zessen E, Reith JH, Tramper J, Wijffels RH (2007) Prediction of volumetric productivity of an outdoor photobioreactor. Biotechnol Bioeng 97:1108–1120PubMedCrossRefGoogle Scholar
  6. Camacho Rubio F, Camacho FG, Sevilla JMF, Chisti Y, Molina Grima E (2003) A mechanistic model of photosynthesis in microalgae. Biotechnol Bioeng 81:473–559CrossRefGoogle Scholar
  7. Carlozzi P (2000) Hydrodynamic aspects and Arthrospira growth in two outdoor tubular undulating row photobioreactors. Appl Microbiol Biotechnol 54:14–22PubMedCrossRefGoogle Scholar
  8. Carlozzi P, Pushparaj B, Degl’Innocenti A, Capperucci A (2006) Growth characteristics of Rhodopseudomonas palustris cultured outdoors, in an underwater tubular photobioreactor, and investigation of photosynthetic efficiency. Appl Microbiol Biotechnol 73:789–795PubMedCrossRefGoogle Scholar
  9. Carvalho AP, Meireles LA, Malcata FX (2006) Microalgal reactors: A review of enclosed system designs and performances. Biotechnol Prog 22:1490–1506PubMedCrossRefGoogle Scholar
  10. Chisti Y (2006) Microalgae as sustainable cell factories. Environ Eng Man J 5:261–274Google Scholar
  11. Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306PubMedCrossRefGoogle Scholar
  12. Chisti Y (2008) Biodiesel from microalgae beats bioethanol. Trends Biotechnol 26:126–131PubMedCrossRefGoogle Scholar
  13. Choi S-L, Suh IS, Lee C-G (2003) Lumostatic operation of bubble column photobioreactors for Haematococcus pluvialis cultures using a specific light uptake rate as control parameter. Enzyme Microb Technol 33:403–409CrossRefGoogle Scholar
  14. Cogne G, Lasseur Ch, Cornet J-F, Dussap C-G, Gros J-B (2001) Growth monitoring of a photosynthetic micro-organism (Spirulina platensis) by pressure measurement. Biotechnol Lett 23:1309–1314CrossRefGoogle Scholar
  15. Converti A, Lodi A, Del Borghi A, Solisio C (2006) Cultivation of Spirulina platensis in a combined airlift-tubular system. Biochem Eng J 32:13–18CrossRefGoogle Scholar
  16. Csögör Z, Herrenbauer M, Schmidt K, Posten C (2001) Light distribution in a novel photobioreactor—modelling for optimization. J Appl Phycol 13:325–333CrossRefGoogle Scholar
  17. Degen J, Uebele A, Retze A, Scmid-Staiger U, Trösch W (2001) A novel photobioreactor with baffles for improved light utilization through the flashing light effect. J Biotechnol 92:89–94PubMedCrossRefGoogle Scholar
  18. de Morais MG, Costa JAV (2007) Biofixation if carbon dioxide by Spirulina sp. and Scenedesmus obliquus cultivated in a three-stage serial tubular photobioreactor. J Biotechnol 129:439–445PubMedCrossRefGoogle Scholar
  19. de Swaaf ME, Pronk JC, Sijtsma L (2003a) Fed-batch cultivation of the docosahexaenoic acid producing marine alga Crypthecodinium cohnii on ethanol. Appl Microbiol Biotechnol 61:40–43PubMedGoogle Scholar
  20. de Swaaf ME, Sijtsma L, Pronk JC (2003b) High-cell-density fed-batch cultivation of the docosahexaenoic acid producing marine alga Crypthecodinium cohnii. Biotechnol Bioeng 81:666–672PubMedCrossRefGoogle Scholar
  21. Doucha J, Lívanský K (2006) Productivity, CO2/O2 exchange and hydraulics in outdoor open high density microalgal (Chlorella sp.) photobioreactors operated in a Middle and Southern European climate. J Appl Phycol 18:811–826CrossRefGoogle Scholar
  22. Doucha J, Straka F, Lívanský K (2005) Utilization of flue gas for cultivation of microalgae (Chlorella sp.) in an outdoor open thin-layer photobioreactor. J Appl Phycol 17:403–412CrossRefGoogle Scholar
  23. Eriksen NT, Geest T, Iversen JJL (1996) Phototrophic growth in the Lumostat: a photo-bioreactor with on-line optimization of light intensity. J Appl Phycol 8:345–352CrossRefGoogle Scholar
  24. Eriksen NT, Poulsen BR, Iversen JJL (1998) Dual sparging photobioreactor for continuous production of microalgae. J Appl Phycol 10:377–382CrossRefGoogle Scholar
  25. Eriksen NT, Riisgård FK, Gunther W, Iversen JJL (2007) On-line estimation of O2 production, CO2 uptake, and growth kinetics of microalgal cultures in a gas tight photobioreactor. J Appl Phycol 19:161–174CrossRefGoogle Scholar
  26. Fernandéz FGA, Hall DO, Guerrero EC, Rao KK, Molina Grima E (2003) Outdoor production of Phaeodactylum tricornutum biomass in a helical reactor. J Biotechnol 103:137–152CrossRefGoogle Scholar
  27. Flech-Schneider P, Lehr F, Posten C (2007) Modelling of growth and product formation of Porphyridium purpureum. J Biotechnol 132:134–141CrossRefGoogle Scholar
  28. Jung S-K, Lee SB (2006) In situ monitoring of cell concentration in a photobioreactor using image analysis: Comparison of uniform light distribution model and artificial neural networks. Biotechnol Prog 22:1443–1450PubMedCrossRefGoogle Scholar
  29. García Camacho F, Gómez AC, Fernández FGA, Sevilla JF, Molina Grima E (1999) Use of concentric-tube airlift photobioreactors for microalgal outdoor mass culture. Enzyme Microb Technol 24:164–172CrossRefGoogle Scholar
  30. García Camacho F, Molina Grima E, Mirón AS, Pascual VG, Chisti Y (2001) Carboxymethyl cellulose protects algal cells against hydrodynamic stress. Enzyme Microb Technol 29:602–610CrossRefGoogle Scholar
  31. Graverholt OS, Eriksen NT (2007) Heterotrophic high cell-density fed-batch and continuous flow cultures of Galdieria sulphuraria and production of phycocyanin. Appl Microbiol Biotechnol 77:69–75PubMedCrossRefGoogle Scholar
  32. Grobbelaar JU (2000) Physiological and technological considerations for optimising mass algal cultures. J Appl Phycol 12:201–206CrossRefGoogle Scholar
  33. Hai T, Ahlers H, Gorenflo V, Steinbüchel A (2000) Axenic cultivation of anoxygenic phototrophic bacteria, cyanobacteria, and microalgae in a new closed tubular glass photobioreactor. Appl Microbiol Biotechnol 53:383–389PubMedCrossRefGoogle Scholar
  34. Hall DO, Fernandéz FGA, Guerrero EC, Rao KK, Molina Grima E (2003) Outdoor helical tubular photobioreactors for microalgal production: Modelling of fluid-dynamics and mass transfer and assessment of biomass productivity. Biotechnol Bioeng 82:62–73PubMedCrossRefGoogle Scholar
  35. Hu Q, Kurano N, Kawachi M, Iwasaki I, Miyachi A (1998) Ultrahigh-cell-density culture of a marine alga Chlorococcum littorale in a flat-plate photobioreactor. Appl Microbiol Biotechnol 49:655–662CrossRefGoogle Scholar
  36. Janssen M, de Bresser L, Baijens T, Tramper J, Mur LR, Snel JFH, Wijffels RH (2000a) Scale-up of photobioreactors: effects of mixing-induced light/dark cycles. J Appl Phycol 12:225–237CrossRefGoogle Scholar
  37. Janssen M, Jannsen M, de Winther M, Tramper J, Mur LR, Snel J, Wijffels RH (2000b) Efficiency of light utilization of Chlamydomonas reinhardtii under medium light/dark cycles. J Biotechnol 78:123–137PubMedCrossRefGoogle Scholar
  38. Janssen M, Slenders P, Tramper J, Mur LR, Wijffels RH (2001) Photosynthetic efficiency of Dunaliella tertiolecta under short light/dark cycles. Enzyme Microb Technol 29:298–305CrossRefGoogle Scholar
  39. Janssen M, Tramper J, Mur LR, Wijfells RH (2002) Enclosed outdoor photobioreactors: Light regime, photosynthetic efficiency, scale-up, and future prospects. Biotechnol Bioeng 81:193–210CrossRefGoogle Scholar
  40. Janssen M, Wijffels R, von Stockar U (2007) Biocalorimetric monitoring of photoautotrophic batch cultures. Thermocim Acta 458:54–64CrossRefGoogle Scholar
  41. Kaewpintong K, Shotipruk A, Powtongsook S, Pavasant P (2007) Photoautotrophic high-density cultivation of vegetative cells of Haematococcus pluvialis in airlift bioreactor. Biores Technol 98:288–295CrossRefGoogle Scholar
  42. Katsuda T, Arimoto T, Igarashi K, Azuma M, Kato J, Takakuwa S, Ooshima H (2000) Light intensity distribution in the illuminated cylindrical photo-bioreactor and its application to hydrogen production by Rhodobacter capsulatus. Biochem Eng J 5:157–164PubMedCrossRefGoogle Scholar
  43. Krichnavaruk S, Powtongsook S, Pavasant P (2007) Enhancd productivity of Chaetoceros calcitrans in airlift photobioreactors. Biores Technol 98:2123–2130CrossRefGoogle Scholar
  44. Kruse O, Rupprecht J, Bader K-P, Thomas-Hall S, Schenk PM, Finazzi G, Hankamer B (2005) Improved photobiological H2 production in engineered green algal cells. J Biol Chem 280:34170–34177PubMedCrossRefGoogle Scholar
  45. Lee H-S, Seo M-W, Kim Z-H, Lee C-G (2006) Determining the best specific light uptake rates for the lumostatic cultures of bubble column photobioreactors. Enzyme Microb Technol 39:447–452CrossRefGoogle Scholar
  46. León-Bañares R, Gonzáles-Ballester D, Galván A, Fernández E (2004) Transgenic microalgae as green cell-factories. Trends Biotechnol 22:45–52PubMedCrossRefGoogle Scholar
  47. Li J, Shou N, Su WW (2003) Online estimation of stirred-tank microalgal photobioreactor cultures based on dissolved oxygen measurements. Biochem Eng J 14:51–65CrossRefGoogle Scholar
  48. Lou H-P, Al-Dahhan MH (2004) Analysing and modelling of photobioreactors by combining first principles of physiology and hydrodynamics. Biotechnol Bioeng 85:382–393CrossRefGoogle Scholar
  49. Lou H-P, Kemoun A, Al-Dahhan MH, Sevilla JMF, Sánchez JLG, Camacho FG, Molina Grima E (2003) Analysis of photobioreactors for culturing high-value microalgae and cyanobacteria via an advanced diagnostic technique: CARPT. Chem Eng Sci 58:2519–1527CrossRefGoogle Scholar
  50. Ma N, Chalmers JJ, Auniņš JG, Zhou W, Xie L (2004) Quantitative studies of cell-bubble interactions and cell damage at different Pluronic F-68 and cell concentrations. Biotechnol Prog 20:1183–1191PubMedCrossRefGoogle Scholar
  51. Marxen K, Vanselow KH, Lippemeier S, Hintze R, Ruser A, Hansen U-P (2005) A photobioreactor system for computer controlled cultivation of microalgae. J Appl Phycol 17:535–549CrossRefGoogle Scholar
  52. Melis A (1999) photosystem-II damage and repair cycle in chloroplasts: what modulates the rate of photodamage in vivo? Trends Plant Sci 4:130–135PubMedCrossRefGoogle Scholar
  53. Merchuk JC, Wu X (2003) Modelling of photobioreactors: application to bubble column simulation. J Appl Phycol 15:163–169CrossRefGoogle Scholar
  54. Merchuk JC, Gluz M, Mukmenev I (2000) Comparison of photobioreactors for cultivation of the red microalga Porphyridium sp. J Chem Technol Biotechnol 75:1119–1126CrossRefGoogle Scholar
  55. Mirón AS, Gómez AC, Camacho FG, Molina Grima E, Chisti Y (1999) Comparative evaluation of compact photobioreactors for large-scale monoculture of microalgae. J Biotechnol 70:249–270CrossRefGoogle Scholar
  56. Mirón AS, García M-CC, Camcho FG, Molina Grima E, Chisti Y (2002) Growth and biochemical characterization of microalgal biomass produced in bubble column and airlift photobioreactors: studies in fed-batch culture. Enzyme Microb Technol 31:1015–1023CrossRefGoogle Scholar
  57. Molina E, Fernández J, Acién FG, Chisti Y (2001) Tubular photobioreactor design for algal cultures. J Biotechnol 92:113–131PubMedCrossRefGoogle Scholar
  58. Molina Grima E, Belarbi E-H, Fernández FGA, Medina AR, Chisti Y (2003) Recovery of microalgal biomass and metabolites: process options and economics. Biotechnol Adv 20:491–515PubMedCrossRefGoogle Scholar
  59. Muller-Feuga A, Pruvost J, Le Guédes R, Le Déan L, Legentilhomme P, Legrand J (2003) Swirling flow implementation in a photobioreactor for batch and continuous cultures of Porphyridium cruentum. Biotechnol Bioeng 84:544–551PubMedCrossRefGoogle Scholar
  60. Mussgnug JH, Thomas-Hall S, Rupprecht J, Foo A, Klassen V, McDowall A, Schenk PM, Kruse O, Hankamer B (2007) Engineering photosynthetic light capture: impacts on improved solar energy to biomass conversion. Plant Biotechnol J 5:802–814PubMedCrossRefGoogle Scholar
  61. Nedbal L, Tichý V, Xiong F, Grobbekaar JU (1996) Microscopic green algae and cyanobacteria in high-frequency intermittent light. J Appl Phycol 8:325–333CrossRefGoogle Scholar
  62. Ogbonna JC, Tanaka H (2000) Light requirement and photosynthetic cell cultivation – Developments of processes for efficient light utilization in photobioreactors. J Appl Phycol 12:207–218CrossRefGoogle Scholar
  63. Ogbonna JC, Tomiyama S, Tanaka H (1998) Heterotrophic cultivation of Euglena gracilis Z for efficient production of α-tocopherol. J Appl Phycol 10:67–74CrossRefGoogle Scholar
  64. Olaizola M (2003) Commercial development of microalgal biotechnology: from the test tube to the marketplace. Biomol Eng 20:459–466PubMedCrossRefGoogle Scholar
  65. Perner-Nochta I, Posten C (2007) Simulations of light intensity variation in photobioreactors. J Biotechnol 131:276–285PubMedCrossRefGoogle Scholar
  66. Perner-Nochta I, Lucumi A, Posten C (2007) Photoautotrophic cell and tissue culture in a tubular photobioreactor. Eng Life Sci 7:127–135CrossRefGoogle Scholar
  67. Pottier L, Pruvost J, Deremetz J, Cornet J-F, Legrand J, Dussap CG (2005) A fully predictive model for one-dimensional light attenuation by Chlamydomonas reinhardtii in a torus photobioreactor. Biotechnol Bioeng 91:569–582PubMedCrossRefGoogle Scholar
  68. Poulsen BR, Iversen JJL (1999) Membrane sparger in bubble column, airlift, and combined membrane-ring sparger bioreactors. Biotechnol Bioeng 64:452–458PubMedCrossRefGoogle Scholar
  69. Pulz O (2001) Photobioreactors: production systems for phototrophic microorganisms. Appl Microbiol Biotechnol 57:287–293PubMedCrossRefGoogle Scholar
  70. Richmond A (2000) Microalgal biotechnology at the turn of the millennium: A personal view. J Appl Phycol 12:441–451CrossRefGoogle Scholar
  71. Richmond A, Cheng-Wu Z, Zarmi Y (2003) Efficient use of strong light for high photosynthetic productivity: interrelationships between the optical path, the optimal population density and cell-growth inhibition. Biomol Eng 20:229–239PubMedCrossRefGoogle Scholar
  72. Sato T, Usui S, Tsuchiya Y, Kondo Y (2006) Invention of outdoor closed type photobioreactor for microalgae. Energy Conversion Manage 47:791–799CrossRefGoogle Scholar
  73. Scragg AH, Illman AM, Carden A, Shales SW (2002) Growth of microalgae with increased calorific values in a tubular bioreactor. Biomass Bioeng 23:67–73CrossRefGoogle Scholar
  74. Schmidt RA, Wiebe MG, Eriksen NT (2005) Heterotrophic high cell-density fed-batch cultures of the phycocyanin producing red alga Galdieria sulphuraria. Biotechnol Bioeng 90:77–84PubMedCrossRefGoogle Scholar
  75. Sloth JK, Wiebe MG, Eriksen NT (2006) Accumulation of phycocyanin in heterotrophic and mixotrophic cultures of the acidophilic red alga Galdieria sulphuraria. Enzyme Microb Technol 38:168–175CrossRefGoogle Scholar
  76. Sobszuk TM, Camacho FG, Molina Grima E, Chisti Y (2006) Effects of agitation on the microalgae Phaeodactylum triconutum and Porphyridium cruentum. Bioprocess Biosyst Eng 28:243–250CrossRefGoogle Scholar
  77. Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Commercial applications of microalgae. J Biosci Bioeng 101:87–96PubMedCrossRefGoogle Scholar
  78. Su W, Li J, Xu N-S (2003) State and parameter estimation of microalgal photobioreactor cultures based on local irradiance measurements. J Biotechnol 105:165–178PubMedCrossRefGoogle Scholar
  79. Suh IS, Lee SB (2001) Cultivation of a cyanobacterium in an internally radiating air-lift photobioreactor. J Appl Phycol 13:381–388CrossRefGoogle Scholar
  80. Suh IS, Lee SB (2003) A light distribution model for an internally radiating photobioreactor. Biotechnol Bioeng 82:180–189PubMedCrossRefGoogle Scholar
  81. Travieso L, Hall DO, Rao KK, Benítez F, Sánchez E, Borja R (2001) A helical tubular photobioreactor producing Spirulina in a semicontinuous mode. Int Biodeterior Biodegradation 47:151–155CrossRefGoogle Scholar
  82. Ugwu CU, Ogbonna JC, Tanaka H (2005a) Characterization of light utilisation and biomass yields of Chlorella sorokiniana in inclined outdoor tubular photobioreactors equipped with static mixers. Process Biochem 40:3406–3411CrossRefGoogle Scholar
  83. Ugwu CU, Ogbonna JC, Tanaka H (2005b) Light/dark cyclic movement of algal culture (Synechocystis aquatilis) in outdoor inclined tubular photobioreactor equipped with static mixers for efficient production of biomass. Biotechnol Lett 27:75–78PubMedCrossRefGoogle Scholar
  84. Vega-Estrada J, Montes-Horcasitas MC, Domínguez-Bocanegra AR, Cañizares-Villanueva RO (2005) Haematococcus pluvialis cultivation in split-cylinder internal-loop airlift photobioreactor under aeration conditions avoiding cell damage. Appl Microbiol Biotechnol 68:31–35PubMedCrossRefGoogle Scholar
  85. Vunjak-Novakovic G, Kim Y, Wu X, Berzin I, Merchhuk JC (2005) Air-lift bioreactors for algal growth on flue gas: mathematical modelling and pilot-plant studies. Ind Eng Chem Res 44:6154–6163CrossRefGoogle Scholar
  86. Wen Z-Y, Chen F (2001) A perfusion-cell bleeding culture strategy for enhancing the productivity of eicosapentanoic acid by Nitzchia laevis. Appl Microbiol Biotechnol 57:316–322PubMedCrossRefGoogle Scholar
  87. Wen Z-Y, Chen F (2003) Heterotrophic production of eicosapentaenoic acid by microalgae. Biotechnol Adv 21:273–294PubMedCrossRefGoogle Scholar
  88. Wu X, Merchuk JC (2004) Simulation of algae growth in a bench scale internal loop airlift reactor. Chem Eng Sci 59:2899–2912CrossRefGoogle Scholar
  89. Wu Z-Y, Shi C-L, Shi X-M (2007) Modelling of lutein production by heterotrophic Chlorella in batch and fed-batch cultures. World J Microbiol Biotechnol 23:1233–1238CrossRefGoogle Scholar
  90. Xiong W, Li X, Xiang J, Wu Q (2008) High-density fermentation of microalga Chlorella protothecoides in bioreactor for microbio-diesel production. Appl Microbiol Biotechnol 78:29–36PubMedCrossRefGoogle Scholar
  91. Yang C, Hua Q, Shimuzu K (2000) Energetics and carbon metabolism during growth of microalgal cells under photoautotrophic, mixotrophic and cyclic light-autotrophic/dark-heterotrophic conditions. Biochem Eng J 6:87–102PubMedCrossRefGoogle Scholar
  92. Yoshimoto N, Sato T, Kondo Y (2005) Dynamic discrete model of flashing light in photosynthesis of microalgae. J Appl Phycol 17:207–214CrossRefGoogle Scholar
  93. Zaslavskaia LA, Lippmeier JC, Shih C, Erhardt D, Grosman AR, Apt KE (2001) Trophic conversion of an obligate photoautotrophic organism through metabolic engineering. Science 292:2073–2075PubMedCrossRefGoogle Scholar
  94. Zijffers J-WF, Jannsen M, Tramper J, Wijffels RH (2008) Design process of an area-efficient photobioreactor. Mar Biotechnol doi: 10.1007/s10126-9077-2
  95. Zitelli GC, Rodolfi L, Biondi N, Tredici MR (2006) Productivity and photosynthetic efficiency of outdoor cultures of Tetraselmis suecica in annular columns. Aquaculture 261:932–943CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Department of Biotechnology, Chemistry and Environmental EngineeringAalborg UniversityAalborgDenmark

Personalised recommendations