Biotechnology Letters

, Volume 30, Issue 9, pp 1589–1593 | Cite as

Continuous dechlorination of tetrachloroethene in an upflow anaerobic sludge blanket reactor

Original Research Paper

Abstract

Influences of hydraulic retention time (HRT) on dechlorination of tetrachloroethene (PCE) were investigated in an upflow anaerobic sludge blanket (UASB) reactor inoculated with anaerobic granular sludge non-pre-exposed to chlorinated compounds. PCE was introduced into the reactor at a loading rate of 3 mg/l d. PCE removal increased from 51 ± 5% to 87 ± 3% when HRT increased from 1 to 4 d, corresponding to an increase in the PCE biotransformation rate from 10.5 ± 2.3 to 21.3 ± 3.7 μmol/d. A higher ethene production rate, 0.9 ± 0.2 μmol/d, was attained without accumulation of dichloroethenes at the HRT of 4 d. Dehalococcoides-like species were detected in sludge granules by fluorescence in situ hybridization, with signal strength in proportion to the extent of PCE dechlorination.

Keywords

Anaerobic granular sludge Dechlorination Tetrachloroethene UASB reactor 

References

  1. De Bruin WP, Koterman MJJ, Posthumus MA et al (1992) Complete biological reductive transformation of tetrachloroethene to ethane. Appl Environ Microbiol 58:1996–2000PubMedGoogle Scholar
  2. Fennell DE, Nijenhuis I, Wilson SF et al (2004) Dehalococcoides ethenogenes strain 195 reductively dechlorinates diverse chlorinated aromatic pollutants. Environ Sci Technol 38:2075–2081PubMedCrossRefGoogle Scholar
  3. Gerritse J, Renard V, Visser J et al (1995) Complete degradation of tetrachloroethene by combining anaerobic dechlorinating and aerobic methanotrophic enrichment cultures. Appl Microbiol Biotechnol 43:920–928PubMedCrossRefGoogle Scholar
  4. Hörber C, Christensen N, Arvin E et al (1999) Tetrachloroethene dechlorination kinetics by Dehalospirillum multivorans immobilized in upflow anaerobic sludge blanket reactors. Appl Microbiol Biotechnol 51:694–699CrossRefGoogle Scholar
  5. Hung C-H, Lee K-S, Cheng L-H et al (2007) Quantitative analysis of a high-rate hydrogen-producing microbial community in anaerobic agitated granular sludge bed bioreactors using glucose as substrate. Appl Microbiol Biotechnol 75:693–701PubMedCrossRefGoogle Scholar
  6. Hwu C-S, Lu C-J (2006) Enhanced dechlorination of chloroethenes by granular sludge under microaerophilic conditions. World J Microbiol Biotechnol 22:841–844CrossRefGoogle Scholar
  7. Hwu C-S, Molenaar G, Garthoff J et al (1997) Thermophilic high-rate anaerobic treatment of wastewater containing long-chain fatty acids: impact of reactor hydrodynamics. Biotechnol Lett 19:447–451CrossRefGoogle Scholar
  8. Lettinga G (1996) Sustainable integrated biological wastewater treatment. Water Sci Technol 33:85–98CrossRefGoogle Scholar
  9. Lettinga G, van Velsen AFM, Hobma SW et al (1980) Use of upflow anaerobic (USB) reactor concept for biological wastewater treatment, especially for anaerobic treatment. Biotechnol Bioeng 22:677–734CrossRefGoogle Scholar
  10. Maymó-Gatell X, Chien Y, Gossett JM et al (1997) Isolation of a bacterium that reductively dechlorinates tetrachloroethene to ethene. Science 276:1568–1571PubMedCrossRefGoogle Scholar
  11. Middeldorp PJM, Luijten MLGC, van de Pas BA et al (1999) Anaerobic microbial reductive dehalogenation of chlorinated ethenes. Bioremediat J 3:151–169CrossRefGoogle Scholar
  12. Prakash SM, Gupta SK (2000) Biodegradation of tetrachloroethylene in upflow anaerobic sludge blanket reactor. Bioresour Technol 72:47–57CrossRefGoogle Scholar
  13. Sponza DT (2003) Enhancement of granule formation and sludge retainment for tetrachloroethylene (TCE) removal in an upflow anaerobic sludge blanket (UASB) reactor. Adv Environ Res 7:453–462CrossRefGoogle Scholar
  14. Yang Y, Zeyer J (2003) Specific detection of Dehalococcoides species by fluorescence in situ hybridization with 16S rRNA-targeted oligonucleotide probes. Appl Environ Microbiol 69:2879–2883PubMedCrossRefGoogle Scholar
  15. Zhang C, Bennett GN (2005) Biodegradation of xenobiotics by anaerobic bacteria. Appl Microbiol Biotechnol 67:600–618PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Department of Environmental EngineeringHungkuang UniversityTaichung CountyTaiwan
  2. 2.Department of Environmental EngineeringNational Chunghsing UniversityTaichung CityTaiwan

Personalised recommendations