Biotechnology Letters

, Volume 30, Issue 8, pp 1359–1365 | Cite as

Heterologous expression of pyruvate decarboxylase in Geobacillus thermoglucosidasius

  • Ann H. Thompson
  • David J. Studholme
  • Edward M. Green
  • David J. Leak
Original Research Paper


Expression of a pyruvate decarboxylase (Pdc) pathway in metabolically versatile thermophilic bacteria could create novel ethanologenic organisms, but no suitable thermostable Pdc is available. We have demonstrated that Pdc from Zymomonas mobilis can be expressed in an active form in Geobacillusthermoglucosidasius at up to 52°C, while expression of Pdc polypeptides up to 54°C was evident from Western blotting. By using an unstable lactate dehydrogenase (ldh) mutant of G. thermoglucosidasius, indirect evidence of Pdc activity in vivo was also obtained.


Decarboxylase Ethanol Geobacillus Pyruvate Thermophile 


  1. Alterthum F, Ingram LO (1989) Efficient ethanol production from glucose, lactose and xylose by recombinant Escherichia coli. Appl Environ Microbiol 55:1943–1948PubMedGoogle Scholar
  2. Barstow DA, Clarke AR, Chia WN et al (1986) Cloning, expression and complete nucleotide sequence of Bacillus stearothermophilus L-lactate dehydrogenase gene. Gene 46:47–55PubMedCrossRefGoogle Scholar
  3. Chen ZF, Wojcik SF, Welker NE (1986) Genetic analysis of Bacillus stearothermophilus by protoplast fusion. J Bacteriol 165:994–1001PubMedGoogle Scholar
  4. Cohn NS (1961) Production of chromatid aberrations by diepoxybutane and an iron chelator. Nature 192:1093–1094PubMedCrossRefGoogle Scholar
  5. Cutting SM, van der Horn PB (1990) Genetic analysis. In: Harwood CR, Cutting SM (eds) Molecular biology methods for bacillus. Wiley, Chichester, UK, pp 27–74Google Scholar
  6. Dien BS, Hespell RB, Wyckoff HA et al (1998) Fermentation of hexose and pentose sugars using a novel ethanologenic Escherichia coli strain. Enz Microb Technol 23:366–371CrossRefGoogle Scholar
  7. Green E, Cusdin, FS, Baghaei-Yazdi N et al (2002) Modification of bacteria. US Patent No 20020042134Google Scholar
  8. Hild HM, Stuckey DC, Leak DJ (2003) Effect of nutrient limitation on product formation during continuous fermentation of xylose with Thermoanaerobacter ethanolicus JW200 Fe(7). Appl Microbiol Biotechnol 60:679–686PubMedGoogle Scholar
  9. Ingram LO, Conway T (1988) Expression of different levels of ethanologenic enzymes from Zymomonas mobilis in recombinant strains of Escherichia coli. Appl Environ Microbiol 54:397–404PubMedGoogle Scholar
  10. Ingram LO, Conway T, Clark DP et al (1987) Genetic engineering of ethanol production in Escherichia coli. Appl Environ Microbiol 53:2420–2425PubMedGoogle Scholar
  11. Laemmli U (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685PubMedCrossRefGoogle Scholar
  12. Liao H, McKenzie T, Hageman R (1986) Isolation of a thermostable enzyme variant by cloning and selection in a thermophile. Proc Natl Acad Sci USA 83:576–580PubMedCrossRefGoogle Scholar
  13. Lynd LR (1989) Production of ethanol from lignocellulosic materials using thermophilic bacteria: criteria evaluation of potential and review. Adv Biochem Eng Biotech 38:1–52Google Scholar
  14. Pohl M, Grotzinger J, Wollmer A et al (1994) Reversible dissociation and unfolding of pyruvate decarboxylase from Zymomonas mobilis. Eur J Biochem 224:651–661PubMedCrossRefGoogle Scholar
  15. Pohl M, Mesch K, Rodenbrock A et al (1995) Stability investigations on the pyruvate decarboxylase from Zymomonas mobilis. Biotech Appl Biochem 22:95–105Google Scholar
  16. Sambrook J, Fritsch EF, Maniatis TS (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbour Laboratory Press, Cold Spring Harbour, NYGoogle Scholar
  17. San Martìn R, Bushell D, Leak DJ et al (1992) Development of a synthetic medium for continuous growth and ethanol production with a lactate dehydrogenase mutant of Bacillus stearothermophilus. J Gen Microbiol 138:987–996PubMedGoogle Scholar
  18. San Martìn R, Bushell D, Leak DJ et al (1993) Pathways of ethanol production from sucrose by a mutant thermophilic Bacillus in continuous culture. J Gen Microbiol 139:1033–1040Google Scholar
  19. Sommer P, Georgieva T, Ahring BK (2004) Potential for using thermophilic anaerobic bacteria for bioethanol production from hemicellulose. Biochem Soc Trans 32:283–289PubMedCrossRefGoogle Scholar
  20. Talarico LA, Gil MA, Yomano LP, Ingram LO, Maupin-Furlow JA (2005) Construction and expression of an ethanol operon in Gram positive bacteria. Microbiology 151:4023–4031PubMedCrossRefGoogle Scholar
  21. Wittung-Stafshede P (2002) Role of cofactors in protein folding. Acc Chem Res 35:201–208PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Ann H. Thompson
    • 1
  • David J. Studholme
    • 1
    • 2
  • Edward M. Green
    • 3
    • 4
  • David J. Leak
    • 1
  1. 1.Division of Biology, Faculty of Natural SciencesImperial College LondonLondonUK
  2. 2.Sainsbury LaboratoryJohn Innes CentreNorwichUK
  3. 3.Green Biologics LtdOxfordshireUK
  4. 4.Agrol LtdSurreyUK

Personalised recommendations