Biotechnology Letters

, Volume 30, Issue 5, pp 791–799

Metabolic flux analysis in biotechnology processes

Review

Abstract

Metabolic flux analysis (MFA) has become a fundamental tool of metabolic engineering to elucidate the metabolic state of the cell and has been applied to various biotechnological processes. In recent years, considerable technical advances have been made. Developments of analytical instruments allow us to determine 13C labeling distribution of intracellular metabolites with high accuracy and sensitivity. Moreover, kinetic information of intracellular label distribution during isotopic instationary enables us to calculate metabolic fluxes with shortened experimental time and decreased amount of labeled substrate. The 13C MFA may be one of the most promising approaches for the target estimation to improve strain performances and production processes.

Keywords

Biotechnology 13C-labelling and analysis Metabolic flux analysis Microbial products Primary metabolites 

References

  1. Antoniewicz MR, Kraynie DF, Laffend LA, Gonzalez-Lergier J, Kelleher JK, Stephanopoulos G (2007) Metabolic flux analysis in a nonstationary system: fed-batch fermentation of a high yielding strain of E. coli producing 1,3-propanediol. Metab Eng 9:277–292PubMedCrossRefGoogle Scholar
  2. Bailey JE (1991) Toward a science of metabolic engineering. Science 252:1668–1675PubMedCrossRefGoogle Scholar
  3. Becker J, Klopprogge C, Zelder O, Heinzle E, Wittmann C (2005) Amplified expression of fructose 1,6-bisphosphatase in Corynebacterium glutamicum increases in vivo flux through the pentose phosphate pathway and lysine production on different carbon sources. Appl Environ Microbiol 71:8587–8596PubMedCrossRefGoogle Scholar
  4. Becker J, Klopprogge C, Herold A, Zelder O, Bolten CJ, Wittmann C (2007) Metabolic flux engineering of l-lysine production in Corynebacterium glutamicum-over expression and modification of G6P dehydrogenase. J Biotechnol 132:99–109PubMedCrossRefGoogle Scholar
  5. Blank LM, Lehmbeck F, Sauer U (2005) Metabolic-flux and network analysis in fourteen hemiascomycetous yeasts. FEMS Yeast Res 5:545–558PubMedCrossRefGoogle Scholar
  6. Cannizzaro C, Christensen B, Nielsen J, von Stockar U (2004) Metabolic network analysis on Phaffia rhodozyma yeast using 13C-labeled glucose and gas chromatography-mass spectrometry. Metab Eng 6:340–351PubMedCrossRefGoogle Scholar
  7. Christensen B, Nielsen J (1999) Isotopomer analysis using GC-MS. Metab Eng 1:282–290PubMedCrossRefGoogle Scholar
  8. Dauner M, Sauer U (2000) GC-MS analysis of amino acids rapidly provides rich information for isotopomer balancing. Biotechnol Prog 16:642–649PubMedCrossRefGoogle Scholar
  9. De Graaf AA, Striegel K, Wittig RM, Laufer B, Schmitz G, Wiechert W, Sprenger GA, Sahm H (1999) Metabolic state of Zymomonas mobilis in glucose-, fructose-, and xylose-fed continuous cultures as analysed by 13C- and 31P-NMR spectroscopy. Arch Microbiol 171:371–385PubMedCrossRefGoogle Scholar
  10. Drysch A, Massaoudi El M, Mack C, Takors R, de Graaf AA, Sahm H (2003) Production process monitoring by serial mapping of microbial carbon flux distributions using a novel sensor reactor approach: II—(13)C-labeling-based metabolic flux analysis and l-lysine production. Metab Eng 5:96–107PubMedCrossRefGoogle Scholar
  11. Drysch A, Massaoudi El M, Wiechert W, de Graaf AA, Takors R (2004) Serial flux mapping of Corynebacterium glutamicum during fed-batch l-lysine production using the sensor reactor approach. Biotechnol Bioeng 85:497–505PubMedCrossRefGoogle Scholar
  12. Fischer E, Sauer U (2003) A novel metabolic cycle catalyzes glucose oxidation and anaplerosis in hungry Escherichia coli. J Biol Chem 278:46446–46451PubMedCrossRefGoogle Scholar
  13. Fredlund E, Blank LM, Schnurer J, Sauer U, Passoth V (2004) Oxygen- and glucose-dependent regulation of central carbon metabolism in Pichia anomala. Appl Environ Microbiol 70:5905–5911PubMedCrossRefGoogle Scholar
  14. Frick O, Wittmann C (2005) Characterization of the metabolic shift between oxidative and fermentative growth in Saccharomyces cerevisiae by comparative 13C flux analysis. Microb Cell Fact 4:30PubMedCrossRefGoogle Scholar
  15. Grotkjaer T, Akesson M, Christensen B, Gombert AK, Nielsen J (2004) Impact of transamination reactions and protein turnover on labeling dynamics in 13C-labeling experiments. Biotechnol Bioeng 86:209–216PubMedCrossRefGoogle Scholar
  16. Grotkjaer T, Christakopoulos P, Nielsen J, Olsson L (2005) Comparative metabolic network analysis of two xylose fermenting recombinant Saccharomyces cerevisiae strains. Metab Eng 7:437–444PubMedCrossRefGoogle Scholar
  17. Hua Q, Yang C, Baba T, Mori H, Shimizu K (2003) Responses of the central metabolism in Escherichia coli to phosphoglucose isomerase and glucose-6-phosphate dehydrogenase knockouts. J Bacteriol 185:7053–7067PubMedCrossRefGoogle Scholar
  18. Ishii N, Robert M, Nakayama Y, Kanai A, Tomita M (2004) Toward large-scale modeling of the microbial cell for computer simulation. J Biotechnol 113:281–294PubMedCrossRefGoogle Scholar
  19. Iwatani S, Van Dien S, Shimbo K, Kubota K, Kageyama N, Iwahata D, Miyano H, Hirayama K, Usuda Y, Shimizu K, Matsui K (2007) Determination of metabolic flux changes during fed-batch cultivation from measurements of intracellular amino acids by LC-MS/MS. J Biotechnol 128:93–111PubMedCrossRefGoogle Scholar
  20. Kiefer P, Heinzle E, Zelder O, Wittmann C (2004) Comparative metabolic flux analysis of lysine-producing Corynebacterium glutamicum cultured on glucose or fructose. Appl Environ Microbiol 70:229–239PubMedCrossRefGoogle Scholar
  21. Klapa MI, Aon JC, Stephanopoulos G (2003) Systematic quantification of complex metabolic flux networks using stable isotopes and mass spectrometry. Eur J Biochem 270:3525–3542PubMedCrossRefGoogle Scholar
  22. Kleijn RJ, van Winden WA, Ras C, van Gulik WM, Schipper D, Heijnen JJ (2006) 13C-labeled gluconate tracing as a direct and accurate method for determining the pentose phosphate pathway split ratio in Penicillium chrysogenum. Appl Environ Microbiol 72:4743–4754PubMedCrossRefGoogle Scholar
  23. Kleijn RJ, Geertman JM, Nfor BK, Ras C, Schipper D, Pronk JT, Heijnen JJ, van Maris AJ, van Winden WA (2007a) Metabolic flux analysis of a glycerol-overproducing Saccharomyces cerevisiae strain based on GC-MS, LC-MS and NMR-derived 13C-labelling data. FEMS Yeast Res 7:216–231PubMedCrossRefGoogle Scholar
  24. Kleijn RJ, Liu F, van Winden WA, van Gulik WM, Ras C, Heijnen JJ (2007b) Cytosolic NADPH metabolism in penicillin-G producing and non-producing chemostat cultures of Penicillium chrysogenum. Metab Eng 9:112–123PubMedCrossRefGoogle Scholar
  25. Kromer JO, Sorgenfrei O, Klopprogge K, Heinzle E, Wittmann C (2004) In-depth profiling of lysine-producing Corynebacterium glutamicum by combined analysis of the transcriptome, metabolome, and fluxome. J Bacteriol 186:1769–1784PubMedCrossRefGoogle Scholar
  26. Kromer JO, Heinzle E, Schroder H, Wittmann C (2006) Accumulation of homolanthionine and activation of a novel pathway for isoleucine biosynthesis in Corynebacterium glutamicum McbR deletion strains. J Bacteriol 188:609–618PubMedCrossRefGoogle Scholar
  27. Lange HC, Eman M, van Zuijlen G, Visser D, van Dam JC, Frank J, de Mattos MJ, Heijnen JJ (2001) Improved rapid sampling for in vivo kinetics of intracellular metabolites in Saccharomyces cerevisiae. Biotechnol Bioeng 75:406–415PubMedCrossRefGoogle Scholar
  28. Li M, Ho PY, Yao S, Shimizu K (2006) Effect of lpdA gene knockout on the metabolism in Escherichia coli based on enzyme activities, intracellular metabolite concentrations and metabolic flux analysis by 13C-labeling experiments. J Biotechnol 122:254–266PubMedCrossRefGoogle Scholar
  29. Marx A, Hans S, Mockel B, Bathe B, de Graaf AA, McCormack AC, Stapleton C, Burke K, O’Donohue M, Dunican LK (2003) Metabolic phenotype of phosphoglucose isomerase mutants of Corynebacterium glutamicum. J Biotechnol 104:185–197PubMedCrossRefGoogle Scholar
  30. Massaoudi El M, Spelthahn J, Drysch A, de Graaf A, Takors R (2003) Production process monitoring by serial mapping of microbial carbon flux distributions using a novel sensor reactor approach: I—sensor reactor system. Metab Eng 5:86–95CrossRefGoogle Scholar
  31. McKinlay JB, Shachar-Hill Y, Zeikus JG, Vieille C (2007) Determining Actinobacillus succinogenes metabolic pathways and fluxes by NMR and GC-MS analyses of 13C-labeled metabolic product isotopomers. Metab Eng 9:177–192PubMedCrossRefGoogle Scholar
  32. Noh K, Gronke K, Luo B, Takors R, Oldiges M, Wiechert W (2007) Metabolic flux analysis at ultra short time scale: isotopically non-stationary 13C labeling experiments. J Biotechnol 129:249–267PubMedCrossRefGoogle Scholar
  33. Ohnishi J, Katahira R, Mitsuhashi S, Kakita S, Ikeda M (2005) A novel gnd mutation leading to increased l-lysine production in Corynebacterium glutamicum. FEMS Microbiol Lett 242:265–274PubMedCrossRefGoogle Scholar
  34. Sauer U, Hatzimanikatis V, Bailey JE, Hochuli M, Szyperski T, Wuthrich K (1997) Metabolic fluxes in riboflavin-producing Bacillus subtilis. Nat Biotechnol 15:448–452PubMedCrossRefGoogle Scholar
  35. Siddiquee Al Zaid K, Arauzo-Bravo MJ, Shimizu K (2004) Metabolic flux analysis of pykF gene knockout Escherichia coli based on 13C-labeling experiments together with measurements of enzyme activities and intracellular metabolite concentrations. Appl Microbiol Biotechnol 63:407–417CrossRefGoogle Scholar
  36. Shirai T, Nakato A, Izutani N, Nagahisa K, Shioya S, Kimura E, Kawarabayasi Y, Yamagishi A, Gojobori T, Shimizu H (2005) Comparative study of flux redistribution of metabolic pathway in glutamate production by two coryneform bacteria. Metab Eng 7:59–69PubMedCrossRefGoogle Scholar
  37. Shirai T, Fujimura K, Furusawa C, Nagahisa K, Shioya S, Shimizu H (2007) Study on roles of anaplerotic pathways in glutamate overproduction of Corynebacterium glutamicum by metabolic flux analysis. Microb Cell Fact 6:19PubMedCrossRefGoogle Scholar
  38. Soga T (2007) Capillary electrophoresis-mass spectrometry for metabolomics. Methods Mol Biol 358:129–137PubMedCrossRefGoogle Scholar
  39. Szyperski T (1998) 13C-NMR, MS and metabolic flux balancing in biotechnology research. Q Rev Biophys 31:41–106PubMedCrossRefGoogle Scholar
  40. Vallino JJ, Stephanopoulos G (1993) Metabolic flux distributions in Corynebacterium glutamicum during growth and lysine overproduction. Biotechnol Bioeng 41:633–645CrossRefPubMedGoogle Scholar
  41. van Dam JC, Eman MR, Frank J, Lange HC, van Dedem GWK, Heijnen JJ (2002) Analysis of glycolytic intermediates in Saccharomyces cerevisiae using anion exchange chromatography and electrospray ionization with tandem mass spectrometric detection. Anal Chim Acta 460:209–218CrossRefGoogle Scholar
  42. Van Winden WA, van Dam JC, Ras C, Kleijn RJ, Vinke JL, van Gulik WM, Heijnen JJ (2005) Metabolic-flux analysis of Saccharomyces cerevisiae CEN.PK113–7D based on mass isotopomer measurements of 13C-labeled primary metabolites. FEMS Yeast Res 5:559–568PubMedCrossRefGoogle Scholar
  43. Wahl A, El Massaoudi M, Schipper D, Wiechert W, Takors R (2004) Serial 13C-based flux analysis of an l-phenylalanine-producing E. coli strain using the sensor reactor. Biotechnol Prog 20:706–714PubMedCrossRefGoogle Scholar
  44. Wiechert W, Mollney M, Petersen S, de Graaf AA (2001) A universal framework for 13C metabolic flux analysis. Metab Eng 3:265–283PubMedCrossRefGoogle Scholar
  45. Wittmann C, Kiefer P, Zelder O (2004a) Metabolic fluxes in Corynebacterium glutamicum during lysine production with sucrose as carbon source. Appl Environ Microbiol 70:7277–7287PubMedCrossRefGoogle Scholar
  46. Wittmann C, Kim HM, Heinzle E (2004b) Metabolic network analysis of lysine producing Corynebacterium glutamicum at a miniaturized scale. Biotechnol Bioeng 5:1–6CrossRefGoogle Scholar
  47. Yang TH, Heinzle E, Wittmann C (2005) Theoretical aspects of 13C metabolic flux analysis with sole quantification of carbon dioxide labeling. Comput Biol Chem 29:121–133PubMedCrossRefGoogle Scholar
  48. Yang TH, Wittmann C, Heinzle E (2006a) Respirometric 13C flux analysis, part I: design, construction and validation of a novel multiple reactor system using on-line membrane inlet mass spectrometry. Metab Eng 8:417–431PubMedCrossRefGoogle Scholar
  49. Yang TH, Wittmann C, Heinzle E (2006b) Respirometric 13C flux analysis—part II: in vivo flux estimation of lysine-producing Corynebacterium glutamicum. Metab Eng 8:432–446CrossRefGoogle Scholar
  50. Zamboni N, Fischer E, Sauer U (2005a) FiatFlux—a software for metabolic flux analysis from 13C-glucose experiments. Bioinformatics 6:209PubMedGoogle Scholar
  51. Zamboni N, Fischer E, Muffler A, Wyss M, Hohmann HP, Sauer U (2005b) Transient expression and flux changes during a shift from high to low riboflavin production in continuous cultures of Bacillus subtilis. Biotechnol Bioeng 89:219–232PubMedCrossRefGoogle Scholar
  52. Zhao J, Baba T, Mori H, Shimizu K (2004) Global metabolic response of Escherichia coli to gnd or zwf gene-knockout, based on 13C-labeling experiments and the measurement of enzyme activities. Appl Microbiol Biotechnol 64:91–98PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Shintaro Iwatani
    • 1
  • Yohei Yamada
    • 1
  • Yoshihiro Usuda
    • 1
  1. 1.Fermentation and Biotechnology LaboratoriesAjinomoto Co., IncKawasaki-ku, Kawasaki-shiJapan

Personalised recommendations