Advertisement

Biotechnology Letters

, Volume 29, Issue 12, pp 1991–1999 | Cite as

Molecular organization of plasmid pER13 in Streptococcus thermophilus

  • G. A. SomkutiEmail author
  • D. H. Steinberg
Original Research Paper

Abstract

Molecular features of the 4139-bp plasmid pER13 found in the dairy fermentation bacterium Streptococcus thermophilus ST113 include five open reading frames (ORFs). ORF1, ORF2 and ORF3 encode proteins for transcriptional repression (CopG), replication (RepB) and mobilization (Mob) that share homology with corresponding proteins of the pMV158 plasmid family, while ORF4 and ORF5 encode putative proteins with unspecified functions. Sequence homologies shared with plasmids found in group B and group D streptococci imply the possibility for genetic exchange with the food-grade S. thermophilus. The structural features of pER13 may be useful in designing strategies for gene transfer in lactic fermentation bacteria.

Keywords

Lactic acid bacteria Plasmid Streptococcus thermophilus 

References

  1. Altschul SF, Gish W, Miller W, Myers EG, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410PubMedGoogle Scholar
  2. Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl M (1987) Current protocols in molecular biology. John Wiley and Sons, New YorkGoogle Scholar
  3. Coderre PE, Somkuti GA (1999) Cloning and expression of the pediocin operon in Streptococus thermophilus and other lactic fermentation bacteria. Curr Microbiol 39:295–301PubMedCrossRefGoogle Scholar
  4. Delcour J (2000) Advances in the genetics of thermophilic lactic acid bacteria. Curr Opinion in Biotechnol 11:497–504CrossRefGoogle Scholar
  5. De Las Rivas B, Marcobal A, Munoz R (2004) Complete nucleotide sequence and structural organization of pPB1, a small Lactobacillus plantarum cryptic plasmid that originated by modular exchange. Plasmid 52:203–211CrossRefGoogle Scholar
  6. Del Solar G, Moscoso M, Espinosa M (1993) Rolling circle replicating plasmids from Gram-positive and Gram-negative bacteria: a wall falls. Mol Microbiol 8:789–796PubMedCrossRefGoogle Scholar
  7. Farias ME, Grohmann E, Espinosa M (1999) Expression of the mobM gene of the streptococcal plasmid pMV158 in Lactococcus lactis subsp. lactis. FEMS Microbiol Lett 176:403–410PubMedCrossRefGoogle Scholar
  8. Fitzgerald GF, Hill C (1996) Genetics of starter cultures. In: Cogan TM, Accolas JP (eds) Dairy starter cultures. VCH Publishers, New York, pp 25–46Google Scholar
  9. Geer LY, Domrachev M, Lipman DJ, Bryant SH (2002) CDART: protein homology by domain architecture. Genome Res 12:1619–1623PubMedCrossRefGoogle Scholar
  10. Geis A, El Demerdash HAM, Heller KJ (2003) Sequence analysis and characterization of plasmids from Streptococcus thermophilus. Plasmid 50:53–69PubMedCrossRefGoogle Scholar
  11. Girard F, Lautier M, Novel G (1987) DNA:DNA homology between plasmids from Streptococcus thermophilus. Lait 67:537–544CrossRefGoogle Scholar
  12. Gomis-Ruth FX, Sola M, Acebo P, Parraga A, Guasch A, Eritja R, Gonzalez A, Espinosa M, del Solar G, Coll M (1998) The structure of plasmid-encoded transcriptional repressor CopG unliganded and bound to its operator. EMBO J 17:7404–7415PubMedCrossRefGoogle Scholar
  13. Grohmann E, Guzman LM, Espinosa M (1999) Mobilisation of the streptococcal plasmid pMV158: interactions of MobM protein with its cognate oriT DNA region. Mol Gen Genet 261:707–715PubMedCrossRefGoogle Scholar
  14. Guzman L, Espinosa M (1997) The mobilization protein, MobM, of the streptococcal plasmid pMV158 specifically cleaves supercoiled DNA at the plasmid oriT. J Mol Biol 267:688–702CrossRefGoogle Scholar
  15. Hols P, Hancy F, Fontaine L, Grossiord B, Prozzi D, Leblond-Bourget N, Decaris B, Bolotin A, Delorme C, Ehrlich DS, Guedon E, Monnet V, Renault P, Kleerebezem M (2005) New insights in the molecular biology and physiology of Streptococcus thermophilus revealed by comparative genomics. FEMS Microbiol Rev 29:435–463PubMedCrossRefGoogle Scholar
  16. Horinouchi S, Weisblum B (1982) Nucleotide sequence and functional map of pE194, a plasmid that specifies inducible resistance to macrolide, lincosamide, and streptogramin type B antibiotics. J Bacteriol 150:804–814PubMedGoogle Scholar
  17. Ilyina TV, Koonin EV (1992) Conserved sequence motifs in the initiator proteins for rolling circle DNA replication encoded by diverse replicons from eubacteria, eucaryotes and archaebacteria. Nuc Acids Res 20:3279–3285CrossRefGoogle Scholar
  18. Janzen T, Kleinsmidt J, Neve H, Geis A (1992) Sequencing and characterization of pST1, a cryptic plasmid from Streptococcus thermophilus. FEMS Microbiol Lett 95:175–180CrossRefGoogle Scholar
  19. Kawamura Y, Hou XG, Sultana F, Miura H, Ezaki T (1995) Determination of 16S rRNA sequence of Streptococcus mitis and Streptococcus gordonii and phylogenetic relationships among members of the genus Streptococcus. Int J Syst Bacteriol 45:406–408PubMedCrossRefGoogle Scholar
  20. Keefe G (1997) Streptococcus agalactiae mastitis: a review. Can Vet J 38:429–437PubMedGoogle Scholar
  21. Khan SA (1997) Rolling-circle replication of bacterial plasmids. Microbiol Mol Biol Rev 61:442–455PubMedGoogle Scholar
  22. Khan SA (2005) Plasmid rolling-circle replication: highlights of two decades of research. Plasmid 53:126–136PubMedCrossRefGoogle Scholar
  23. Kleerebezem M, Boekhorst J, van Kranenburg R, Molenaar D, Kuipers OP, Leer R, Tarchini R, Peters SA, Sandbrink HM, Fiers MW, Stiekema W, Lankhorst RM, Bron PA, Hoffer SM, Groot MN, Kerkhoven R, de Vries M, Ursing B, de Vos WM, Siezen RJ (2003) Complete genome sequence of Lactobacillus plantarum WCFS1. Proc Natl Acad Sci USA 100:1990–1995PubMedCrossRefGoogle Scholar
  24. Kramer MG, Khan SA, Espinosa M (1998) Lagging-strand replication from the ssoA origin of plasmid pMV158 in Streptococcus pneumoniae: in vivo and in vitro influences of mutations in two conserved ssoA regions. J Bacteriol 180:83–89PubMedGoogle Scholar
  25. Lacks SA, Lopez P, Greenberg B, Espinosa M (1986) Identification and analysis of genes for tetracycline resistance and replication functions in the broad-host-range plasmid pLS1. J Mol Biol 192:753–756PubMedCrossRefGoogle Scholar
  26. LeBlanc DJ, Chen YM, Lee LN (1993) Identification and characterization of a mobilization gene in the streptococcal plasmid, pPA380-1. Plasmid 28:130–145CrossRefGoogle Scholar
  27. Nakamura M, Ogata K, Nagamine T, Tajima K, Matsui H, Benno Y (2000) Characterization of the cryptic plasmid pSBO2 isolated from Streptococcus bovis JB1 and construction of a new shuttle vector. Curr Microbiol 41:27–32PubMedCrossRefGoogle Scholar
  28. O’Sullivan T, van Sinderen D, Fitzgerald G (1999) Structural and functional analysis of pCI65st, a 6.5 kb plasmid from Streptococcus thermophilus NDI-6. Microbiol 145:127–134Google Scholar
  29. Petrova P, Miteva V, Ruiz-Maso JA, del Solar G (2003) Structural and functional analysis of pt38, a 2.9 kb plasmid of Streptococcus thermophilus yogurt strain. Plasmid 50:176–189PubMedCrossRefGoogle Scholar
  30. Ponsegrau W, Lanka E (1996) Enzymology of DNA strand transfer by conjugative mechanisms. Prog Nucleic Acids Res 54:197–251CrossRefGoogle Scholar
  31. Pridmore D, Stefanova T, Mollet B (1994) Cryptic plasmids from Lactobacillus helveticus and their evolutionary relationship. FEMS Microbiol Lett 124:301–305PubMedCrossRefGoogle Scholar
  32. Priebe SD, Lacks SA (1989) Region of streptococcal plasmid pMV158 required for conjugative mobilization. J Bacteriol 171:4778–4784PubMedGoogle Scholar
  33. Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467PubMedCrossRefGoogle Scholar
  34. Shareck J, Choi Y, Lee B, Miguez CB (2004) Cloning vectors based on cryptic plasmids isolated from lactic acid bacteria: their characteristics and potential applications in biotechnology. Crit Rev Biotechnol 24:155–208PubMedCrossRefGoogle Scholar
  35. Smith MD, Shoemaker NB, Burdett V, Guild WR (1980) Transfer of plasmids by conjugation in Streptococcus pneumoniae. Plasmid 3:70–79PubMedCrossRefGoogle Scholar
  36. Solaiman DKY, Somkuti GA (1993) Shuttle vectors developed from Streptococcus thermophilus native plasmid. Plasmid 30:67–78PubMedCrossRefGoogle Scholar
  37. Solaiman DKY, Somkuti GA (1996) Expression of a rhodococcal indigo gene in Streptococcus thermophilus. Biotechnol Lett 18:19–24CrossRefGoogle Scholar
  38. Solow BT, Somkuti GA (2000) Comparison of low-molecular weight heat stress proteins encoded on plasmids in different strains of Streptococcus thermophilus. Curr Microbiol 41:177–181PubMedCrossRefGoogle Scholar
  39. Solow BT, Somkuti GA (2001) Molecular properties of Streptococcus thermophilus plasmid pER35 encoding a restriction modification system. Curr Microbiol 42:122–128PubMedCrossRefGoogle Scholar
  40. Somkuti GA, Steinberg DH (1986) Distribution and analysis of plasmids in Streptococcus thermophilus. J Ind Microbiol 1:157–163CrossRefGoogle Scholar
  41. Somkuti GA, Steinberg DH (1991) DNA-DNA hybridization analysis of Streptococcus thermophilus plasmids. FEMS Microbiol Lett 78:271–276CrossRefGoogle Scholar
  42. Somkuti GA, Solaiman DKY, Steinberg DH (1995) Native promoter-plasmid vector system for heterologous cholesterol oxidase synthesis in Streptococcus thermophilus. Plasmid 33:7–14PubMedCrossRefGoogle Scholar
  43. Somkuti GA, Solaiman DKY, Steinberg DH (1998) Structural and functional properties of the hsp16.4-bearing plasmid pER341 in Streptococcus thermophilus. Plasmid 40:174–180CrossRefGoogle Scholar
  44. Somkuti GA, Steinberg DH (1999) Promoter activity of the pER341-borne STPhsp in heterologous gene expression in Escherichia coli and Streptococcus thermophilus. FEMS Microbiol Lett 179:431–436PubMedGoogle Scholar
  45. Somkuti GA, Steinberg DH (2003) Pediocin production by recombinant lactic acid bacteria. Biotechnol Lett 25:473–477PubMedCrossRefGoogle Scholar
  46. Staats JJ, Feder I, Okwumabua O, Chengappa M (1997) Streptococcus suis: past and present. Vet Res Commun 21:381–407PubMedCrossRefGoogle Scholar
  47. Stougaard P, Molin S (1981) Vertical dye-buoyant density gradients for rapid analysis and preparation of plasmid DNA. Anal Biochem 118:191–193PubMedCrossRefGoogle Scholar
  48. Su P, Jury K, Allison GE, Wong WY, Kim WS, Liu CQ, Vancov T, Dunn NW (2002) Cloning vectors for Streptococcus thermophilus derived from a native plasmid. FEMS Microbiol Lett 216:43–47PubMedCrossRefGoogle Scholar
  49. Takamatsu D, Osaki M, Sekizaki T (2000) Sequence analysis of a small cryptic plasmid isolated from Streptococcus suis serotype 2. Curr Microbiol 40:61–66PubMedCrossRefGoogle Scholar
  50. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nuc Acids Res 22:4673–4680CrossRefGoogle Scholar
  51. Turgeon N, Moineau S (2001) Isolation and characterization of a Streptococcus thermophilus plasmid closely related to the pMV158 family. Plasmid 45:171–183PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  1. 1.U.S. Department of AgricultureEastern Regional Research Center, Agricultural Research ServiceWyndmoorUSA

Personalised recommendations