Biotechnology Letters

, Volume 29, Issue 12, pp 1939–1946 | Cite as

Loop-mediated isothermal amplification for rapid detection of Bacillus anthracis spores

  • Yan-Mei Qiao
  • Yong-Chao Guo
  • Xian-En Zhang
  • Ya-Feng Zhou
  • Zhi-Ping Zhang
  • Hong-Ping Wei
  • Rui-Fu Yang
  • Dian-Bing Wang
Original Research Paper

Abstract

A loop-mediated isothermal amplification (LAMP) assay system was employed for detecting Bacillus anthracis spores in pure cultures as well as in various simulated powder samples. The specificity of the designed LAMP primer sets was validated by assaying 13 B. anthracis strains and 33 non-B. anthracis species. The detection limits of the LAMP assay were 10 spores/tube for pure cultures and 100 spores/2 mg powder for simulated powder samples. The results show that the LAMP protocol is a promising method for detecting B. anthracis.

Keywords

Bacillusanthracis Detection Isothermal amplification LAMP 

Notes

Acknowledgements

This work was supported by the Chinese Academy of Sciences. We thank Dr. Zhiming Yuan for providing Bacillus cereus strains.

References

  1. Baeumner AJ, Pretz J, Fang S (2004) A universal nucleic acid sequence biosensor with nanomolar detection limits. Anal Chem 76:888–894PubMedCrossRefGoogle Scholar
  2. Belgrader P, Hansford D, Kovacs GT, Venkateswaran K, Mariella R Jr, Milanovich F, Nasarabadi S, Okuzumi M, Pourahmadi F, Northrup MA (1999) A minisonicator to rapidly disrupt bacterial spores for DNA analysis. Anal Chem 71:4232–4236PubMedCrossRefGoogle Scholar
  3. Coker PR, Smith KL, Fellows PF, Rybachuck G, Kousoulas KG, Hugh-Jones ME (2003) Bacillus anthracis virulence in Guinea pigs vaccinated with anthrax vaccine adsorbed is linked to plasmid quantities and clonality. J Clin Microbiol 41:1212–1218PubMedCrossRefGoogle Scholar
  4. Drago L, Lombardi A, Vecchi ED, Gismondo MR (2002) Real-time PCR assay for rapid detection of Bacillus anthracis spores in clinical samples. J Clin Microbiol 40:4399PubMedCrossRefGoogle Scholar
  5. Edwards KA, Clancy HA, Baeumner AJ (2006) Bacillus anthracis: toxicology, epidemiology and current rapid-detection methods. Anal Bioanal Chem 384:73–84PubMedCrossRefGoogle Scholar
  6. Endo S, Komori T, Ricci G, Sano A, Yokoyama K, Ohori A, Kamei K, Franco M, Miyaji M, Nishimura K (2004) Detection of gp43 of Paracoccidioides brasiliensis by the loop-mediated isothermal amplification (LAMP) method. FEMS Microbiol Lett 234:93–97PubMedCrossRefGoogle Scholar
  7. Hoffmaster AR, Meyer RF, Bowen MD, Marston CK, Weyant RS, Thurman K, Messenger SL, Minor EE, Winchell JM, Rassmussen MV, Newton BR, Parker JT, Morrill WE, McKinney N, Barnett GA, Sejvar JJ, Jernigan JA, Perkins BA, Popovic T (2002) Evaluation and validation of a real-time polymerase chain reaction assay for rapid identification of Bacillus anthracis. Emerg Infect Dis 8:1178–1182PubMedGoogle Scholar
  8. Iwamoto T, Sonobe T, Hayashi K (2003) Loop-mediated isothermal amplification for direct detection of Mycobacterium tuberculosis complex, M. avium, and M. intracellulare in sputum samples. J Clin Microbiol 41:2616–2622PubMedCrossRefGoogle Scholar
  9. Makino S, Cheun HI (2003) Application of the real-time PCR for the detection of airborne microbial pathogens in reference to the anthrax spores. J Microbiol Methods 53:141–147PubMedCrossRefGoogle Scholar
  10. Notomi T, Okayama H, Masubuchi H, Yonekawa T, Watanabe K, Amino N, Hase T (2000) Loop-mediated isothermal amplification of DNA. Nucleic Acids Res 28:E63PubMedCrossRefGoogle Scholar
  11. Okafuji T, Yoshida N, Fujino M, Motegi Y, Ihara T, Ota Y, Notomi T, Nakayama T (2005) Rapid diagnostic method for detection of mumps virus genome by loop-mediated isothermal amplification. J Clin Microbiol 43:1625–1631PubMedCrossRefGoogle Scholar
  12. Phillips AP, Martin KL (1983) Quantitative immunofluorescence studies of the serology of Bacillus anthracis spores. Appl Environ Microbiol 46:1430–1432PubMedGoogle Scholar
  13. Phillips AP, Martin KL, Horton WH (1984) The choice of methods for immunoglobulin IgG purification: yield and purity of antibody activity. J Immunol Methods 74:385–393PubMedCrossRefGoogle Scholar
  14. Ramisse V, Patra G, Vaissaire J, Mock M (1999) The Ba813 chromosomal DNA sequence effectively traces the whole Bacillus anthracis community. J Appl Microbiol 87:224–228PubMedCrossRefGoogle Scholar
  15. Redmond C, Pearce MJ, Manchee RJ, Berdal BP (1998) Deadly relic of the Great War. Nature 393:747–748PubMedCrossRefGoogle Scholar
  16. Reif TC, Johns M, Pillai SD, Carl M (1994) Identification of capsule-forming Bacillus anthracis spores with the PCR and a novel dual-probe hybridization format. Appl Environ Microbiol 60:1622–1625PubMedGoogle Scholar
  17. Stopa PJ (2000) The flow cytometry of Bacillus anthracis spores revisited. Cytometry 41:237–244PubMedGoogle Scholar
  18. Wang JY, Roehrl MH (2005) Anthrax vaccine design: strategies to achieve comprehensive protection against spore, bacillus, and toxin. Med Immunol 4:4PubMedCrossRefGoogle Scholar
  19. Wang SH, Wen JK, Zhou YF, Zhang ZP, Yang RF, Zhang JB, Chen J, Zhang XE (2004) Identification and characterization of Bacillus anthracis by multiplex PCR on DNA chip. Biosens Bioelectron 20:807–813PubMedGoogle Scholar
  20. WHO (2003) Guidelines for the surveillance and control of anthrax in humans and animals [monograph on the Internet]. World Health Organization, GenevaGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Yan-Mei Qiao
    • 1
    • 2
  • Yong-Chao Guo
    • 1
  • Xian-En Zhang
    • 1
  • Ya-Feng Zhou
    • 1
  • Zhi-Ping Zhang
    • 1
  • Hong-Ping Wei
    • 1
  • Rui-Fu Yang
    • 3
  • Dian-Bing Wang
    • 1
  1. 1.State Key Laboratory of Virology, Wuhan Institute of VirologyChinese Academy of SciencesWuhanChina
  2. 2.Graduate SchoolChinese Academy of SciencesBeijingChina
  3. 3.The Institute of Microbiology & EpidemiologyAcademy of Military Medical SciencesBeijingChina

Personalised recommendations