Biotechnology Letters

, Volume 29, Issue 11, pp 1637–1644 | Cite as

Liposome/DNA systems: correlation between association, hydrophobicity and cell viability

  • Nadia S. Chiaramoni
  • Lucía Speroni
  • María C. Taira
  • Silvia del V. Alonso
Original Research Paper


Small unilamellar vesicles associated with plasmid DNA showed maximum association efficiency for a cationic mixture of egg phosphatidylcholine (EPC):1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE):di-1,2-dioleoyl-3-trimethyl ammonium propane (DOTAP) (16:8:1 molar ratio) [65%], followed by neutral lipids EPC:1,2-dimyristoyl-sn-glycero-3-phosphoethanolamine (DMPE):cholesterol (Chol) (2:2:1 molar ratio) [30%], and a polymerized formulation 1,2-bis(10,12-tricosadiynoyl)sn-glycero-3-phosphocholine (DC8,9PC):DMPE:Chol (2:2:1 molar ratio) [11%]. The hydrophobicity factor (HF) for these formulations followed the trend DC8,9PC:DMPE:CHOL < EPC:DMPE:Chol < EPC:DOPE DOTAP, and DNA association did not alter this trend. Results suggest that the higher the HF value, the more fluid the membrane and the higher the efficiency of DNA association. On the other hand, no differences were observed in cell toxicity with lipids up to 1 mg/ml in VERO cells.


Cell viability Hydrophobicity Liposomes Plasmid DNA Polymeric lipid 



We thank Lic. Silvina Mangano, Lic. Ricardo Gargini and Lic. Marcelo Argüelles for their technical assistance in VP7 plasmid DNA obtention and helpful discussions. This work was supported by grants from CIC (Comisión de Investigaciones Científicas), CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas), and the Universidad Nacional de Quilmes (Buenos Aires, Argentina). Silvia del V. Alonso is a Scientific Research Career member of the CONICET, Argentina.


  1. Ahl PL, Price R, Smuda J, Gaber BP, Singh A (1990) Insertion of bacteriorhodopsin into polymerized diacetylenic phosphatidylcholine bilayers. Biochim Biophys Acta 1028:141–153PubMedCrossRefGoogle Scholar
  2. Albariño CG, Romanowski V (1994) Phenol extraction revisited: a rapid method for the isolation and preservation of human genomic DNA from whole blood. Mol Cell Probes 5:423–427CrossRefGoogle Scholar
  3. Alonso-Romanowski S, Chiaramoni NS, Lioy VS, Gargini RA, Viera LI, Taira MC (2003) Characterization of diacetylenic liposomes as carriers for oral vaccines. Chem Phys Lipids 122:191–203PubMedCrossRefGoogle Scholar
  4. Bakaltcheva I, Williams WP, Schmitt JM, Hincha DK (1994) The solute permeability of thylakoid membranes is reduced by low concentrations of trehalose as a co-solute. Biochim Biophys Acta 3:38–44Google Scholar
  5. Bangham AD (1972) Model membranes. Chem Phys Lipids 4:386–392CrossRefGoogle Scholar
  6. Bordi F, Cametti C, De Luca F, Gili T, Gaudino D, Sennato S (2003) Charged lipid monolayers at the air-solution interface: coupling to polyelectrolytes. Colloids Surf B Biointerfaces 29:149–157CrossRefGoogle Scholar
  7. Borgatti M, Breda L, Cortesi R, Nastruzzi C, Romanelli A, Saviano M, Bianchi N, Mischiati C, Pedone C, Gambari R (2002) Cationic liposomes as delivery systems for double-stranded PNA-DNA chimeras exhibiting decoy activity against NF-κB transcription factors. Biochem Pharmacol 64:609–616PubMedCrossRefGoogle Scholar
  8. Chiaramoni NS, Speroni L, Taira MC, Alonso Romanowski S (2003) Lipid-DNA formulations: an approach to biodistribution assays. Biocell 27:86–86Google Scholar
  9. Even-Chem S, Barenholz Y (2000) DOTAP cationic liposomes prefer relaxed over supercoiled plasmids. Biochim Biophys Acta 1509:176–188CrossRefGoogle Scholar
  10. Fabani MM, Gargini R, Taira MC, Iacono R, Alonso-Romanowski S (2002) Study of in vitro stability of liposomes and in vivo antibody response to antigen associated with liposomes containing GM1 after oral and subcutaneous immunization. J Liposome Res 12:13–27PubMedCrossRefGoogle Scholar
  11. Felgner PL, Gadek TR, Holm M, Roman R, Chan HS, Wenz M, Northrop JP, Ringold M, Danilesen H (1987) Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure. Proc Natl Acad Sci USA 84:7413–7417PubMedCrossRefGoogle Scholar
  12. Gregoriadis G, Bacon A, Caparros-Wanderley W, McCormack B (2002) A role for liposomes in genetic vaccination. Vaccine 20:B1–B9PubMedCrossRefGoogle Scholar
  13. Gregoriadis G, Saffie R, Hart SL (1996) High yield incorporation of plasmid DNA within liposomes: effect on DNA integrity and transfection efficiency. J Drug Target 3:469–475PubMedGoogle Scholar
  14. Jenkins N (1999) Cell evaluation protocols. In: Jenkins N (ed) Animal cell biotechnology methods and protocols, vol 8. Humana Press Totowa, New Jersey, USA, pp 131–144CrossRefGoogle Scholar
  15. Lelkes PI, Miller IR (1980) Perturbations of membrane structure by optical probes: II. Differential scanning calorimetry of dipalmitoyllecithin and its analogs interacting with Merocyanine 540. J Membr Biol 31:1–15Google Scholar
  16. Mirska D, Schirmer K, Funari SS, Langner A, Dobner B, Brezesinski G (2005) Biophysical and biochemical properties of a binary lipid mixture for DNA transfection. Colloids Surf B Biointerfaces 40:51–59PubMedCrossRefGoogle Scholar
  17. Pedroso de Lima MC, Neves S, Filipe A, Duzgunes N, Simoes S (2003) Cationic liposomes for gene delivery: from biophysics to biological applications. Curr Med Chem 14:1221–1231CrossRefGoogle Scholar
  18. Perrie Y, Gregoriadis G (2000) Liposome-entrapped plasmid DNA: characterisation studies. Biochim Biophys Acta 1475:125–132PubMedGoogle Scholar
  19. R.R.C. New (1990) Ficoll flotation method for DNA. In: Rickwood D (ed) Liposomes: a practical approach. IRL Press, UK, pp 95–96Google Scholar
  20. Sambrook J, Fritsch EF, Maniatis T (1989) Quantitation of DNA ns RNA. In: Nolan C (ed) Molecular cloning: a laboratory manual, vol 3, 2nd edn. Cold Spring Harbor Laboratory Press, pp E5–E7Google Scholar
  21. Savva M, Aljaberi A, Feigand J, Beer Stolz D (2005) Correlation of the physicochemical properties of symmetric 1,3-dialkoylamidopropane-based cationic lipids containing single primary and tertiary amine polar head groups with in vitro transfection activity. Colloids Surf B Biointerfaces 43:43–56PubMedCrossRefGoogle Scholar
  22. Viera LI, Senisterra GA, Disalvo EA (1996) Changes in the optical properties of liposome dispersions in relation to the interlamellar distance and solute interaction. Chem Phys Lipids 17:45–54CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Nadia S. Chiaramoni
    • 1
  • Lucía Speroni
    • 1
  • María C. Taira
    • 1
  • Silvia del V. Alonso
    • 1
  1. 1.Laboratory of Biomembranes (LBM)Universidad Nacional de QuilmesBuenos AiresArgentina

Personalised recommendations