Biotechnology Letters

, Volume 29, Issue 10, pp 1549–1556 | Cite as

Plasmid maintenance and physiology of a genetically engineered Escherichia coli strain during continuous l-carnitine production

  • Vicente Bernal
  • María González-Veracruz
  • Manuel Cánovas
  • José L. Iborra
Original Research Paper


The effect of immobilization on cell physiology and how this determines cell metabolic performance is an important concern for developing bioprocess. This is particularly true for genetically modified microorganisms and their genetic stability. For this reason the stability and physiological state of plasmid-bearing E. coli cells were ascertained by flow cytometry. Differences in the cellular DNA and protein content (15–20%) permit discrimination of control and plasmid-bearing cells, as well as adaptation to continuous cultivation conditions in both freely suspended and immobilized states to be monitored. Moreover, the observed metabolic burden due to maintenance and over-expression of plasmid-coded genetic material and slow cell growth in poorly-viable immobilized cells were found to be the main factors contributing to strain stabilization.


Escherichia coli Flow cytometry Genetic stability l-Carnitine Metabolic burden 



This work has been funded by MEC project BIO2005-08988-CO-1, CARM project 06 BIO2005/01-6468 and Fundación Séneca CARM project 2005 2928/PI/05. V. Bernal acknowledges research fellowships from Fundación Séneca-CARM and Fundación CajaMurcia.


  1. Akerlund T, Nordström K, Bernander R (1995) Analysis of cell size and DNA content in exponential growing and stationary-phase batch cultures of Escherichia coli. J Bacteriol 77:6791–6795Google Scholar
  2. Cánovas M, Bernal V, Torroglosa T, Ramirez JL, Iborra JL (2003) Link between primary and secondary metabolism in the biotransformation of trimethylammonium compounds by Escherichia coli. Biotechnol Bioeng 84:686–699PubMedCrossRefGoogle Scholar
  3. Cánovas M, Bernal V, González M, Kleber HP, Iborra JL (2005) Factors affecting the biotransformation of trimethylammonium compounds into l-carnitine by Escherichia coli. Biochem Eng J 26:145–154CrossRefGoogle Scholar
  4. Cánovas M, García V, Bernal V, Torroglosa T, Iborra JL (2007) Analysis of Escherichia coli cell state by flow cytometry during whole cell catalyzed biotransformation for l-carnitine production. Process Biochem 42:25–33CrossRefGoogle Scholar
  5. Castellar MR, Obón JM, Marín A, Cánovas M, Iborra JL (2001) l-carnitine production using a recombinant Escherichia coli strain. Enz Microbial Tech 28:785–791CrossRefGoogle Scholar
  6. Caulcott CA, Dunn A, Robertson HA, Cooper NS, Brown ME, Rhodes PM (1987) Investigation of the effect of growth environment on the stability of low-copy-number plasmids in Escherichia coli. J Gen Microbiol 133:1881–1889PubMedGoogle Scholar
  7. Chibata I, Tosa T, Sato T, Takata I (1987) Immobilization of cells in carrageenan. Method Enzymol 135:189–198CrossRefGoogle Scholar
  8. Davey HM, Kell DB (1996) Flow cytometry and cell sorting of heterogeneous microbial populations: the importance of single cell analyses. Microbiol Rev 60:641–696PubMedGoogle Scholar
  9. Doran PM, Bailey JE (1986) Effects of immobilization on growth, fermentation properties, and macromolecular composition of Saccharomyces cerevisiae attached to gelatin. Biotechnol Bioeng 33:1283–1289Google Scholar
  10. Eichler K, Bourgis F, Buchet A, Kleber HP, Mandrand-Berthelot MA (1994) Molecular characterization of the cai operon necessary for carnitine metabolism in Escherichia coli. Mol Microbiol 13:775–786PubMedCrossRefGoogle Scholar
  11. Elssner T, Engemann C, Frauendorf H, Haferburg D, Kleber HP (2001) Involvement of coenzyme A esters and two new enzymes, an enoyl-CoA hydratase and a CoA-transferase, in the hydration of crotonobetaine to l-carnitine by E. coli. Biochemistry 40:11140–11148PubMedCrossRefGoogle Scholar
  12. Flores S, de Anda-Herrera R, Gosset G, Bolívar FG (2004) Growth-rate recovery of Escherichia coli cultures carrying a multicopy plasmid, by engineering of the pentose-phosphate pathway. Biotechnol Bioeng 87:485–494PubMedCrossRefGoogle Scholar
  13. González-Vara A, Rossi M, Altomare L, Eikmanns B, Matteuzi D (2003) Stability of recombinant plasmid on the continuous culture of Bifidobacterium animalis ATCC 27536. Biotechnol Bioeng 84:145–150PubMedCrossRefGoogle Scholar
  14. Hewitt CJ, Nebe-Von Caron G, Nienow AW, McFarlane CM (1999) Use of multi-staining flow cytometry to characterise the physiological state of Escherichia coli W3110 in high cell density fed-batch cultures. Biotechnol Bioeng 63:705–711PubMedCrossRefGoogle Scholar
  15. Hewitt CJ, Nebe-Von Caron G, Axelsson B, McFarlane CM, Nienow AW (2000) Studies related to the fed-batch fermentations using multiparameter flow cytometry: effect of a changing microenvironment with respect to glucose and dissolved oxygen concentration. Biotechnol Bioeng 70:381–390PubMedCrossRefGoogle Scholar
  16. Jones KL, Keasling JD (1998) Construction and characterization of F plasmid-based expression vector. Biotechnol Bioeng 59:659–665PubMedCrossRefGoogle Scholar
  17. Junter GA, Jouenne T (2004) Immobilized viable microbial cells: from the process to the proteome em leader or the cart before the horse. Biotechnol Adv 22:633–658PubMedCrossRefGoogle Scholar
  18. Kiy T, Tiedtke A (1993) Effects of immobilization on growth, morphology, and DNA content of the ciliated protozoon Tetrahymena thermophila. FEMS Microbiol Lett 106:117–122PubMedCrossRefGoogle Scholar
  19. Kumar KPKR, Maschke HE, Friehs K, Shugerl K (1991) Strategies for improving plasmid stability in genetically modified bacteria in bioreactors. Trends Biotechnol 9:279–284PubMedCrossRefGoogle Scholar
  20. Looser V, Hammes F, Keller M, Berney M, Kovar K, Egli T (2005) Flow-cytometric detection of changes in the physiological state of E. coli expressing a heterologous membrane protein during carbon-limited fedbatch cultivation. Biotechnol Bioeng 92:69–78PubMedCrossRefGoogle Scholar
  21. Lyngberg OK, Thiagarajan V, Stemke DJ, Schottel JL, Scriven LE, Flickinger MC (1999) A patch coating method for preparing biocatalytic films of Escherichia coli. Biotechnol Bioeng 62:44–55PubMedCrossRefGoogle Scholar
  22. Nebe-von Caron G, Stephens PJ, Hewitt CJ, Powell JR, Badley RA (2000) Analysis of bacterial function by multi-colour fluorescence flow cytometry and single cell sorting. J Microbiol Meth 42:97–114CrossRefGoogle Scholar
  23. Stephanopoulos GN, Aristidou AA, Nielsen J (1998) Comprehensive models for cellular reactions. In: Stephanopoulos GN, Aristidou AA, Nielsen J (eds) Metabolic engineering, principles and methodologies. San Diego: Academic PressGoogle Scholar
  24. Walls EL, Gainer JL (1988) Retention of plasmid bearing cells by immobilization. Biotechnol Bioeng 34:717–724CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Vicente Bernal
    • 1
  • María González-Veracruz
    • 1
  • Manuel Cánovas
    • 1
  • José L. Iborra
    • 1
  1. 1.Departamento de Bioquímica y Biología Molecular B e Inmunología, Facultad de QuímicaUniversidad de MurciaMurciaSpain

Personalised recommendations