Biotechnology Letters

, Volume 29, Issue 10, pp 1561–1566

Construction of a novel system for cell surface display of heterologous proteins on Pichia pastoris

  • Qingjie Wang
  • Lei Li
  • Min Chen
  • Qingsheng Qi
  • Peng George Wang
Original Research Paper

Abstract

A versatile vector was developed for heterologous proteins display on the cell surface of Pichia pastoris using the C-terminal half of α-agglutinin from Saccharomyces cerevisiae as a membrane anchor under the control of the alcohol oxidase 1 promoter (pAOX1). Multiple cloning sites and the sequence encoding the Xpress epitope (-Asp-Leu-Tyr-Asp-Asp-Asp-Asp-Lys-) were introduced into the vector for insertion of heterologous genes and selective cleavage of target proteins. Enhanced green fluorescence protein (EGFP) was used as a model protein to check the function of this vector. The expression of EGFP on the P. pastoris surface was confirmed by confocal laser scanning microscopy. Fluorescence microscopy and western blot analysis confirmed that EGFP can be successfully cleaved from the cell surface by treating with enterokinase.

Keywords

α-Agglutinin Enhanced green fluorescence protein Pichia pastoris Surface display 

References

  1. Breinig F, Schmitt MJ (2002) Spacer-elongated cell wall fusion proteins improve cell surface expression in the yeast Saccharomyces cerevisiae. Appl Microbiol Biotechnol 58:637–644PubMedCrossRefGoogle Scholar
  2. Choi BK, Bobrowicz P, Davidson RC, Hamilton SR, Kung DH, Li H, Miele RG, Nett JH, Wildt S, Gerngross TU (2003) Use of combinatorial genetic libraries to humanize N-linked glycosylation in the yeast Pichia pastoris. Proc Natl Acad Sci USA 100:5022–5027PubMedCrossRefGoogle Scholar
  3. Gemmill TR, Trimble RB (1999) Overview of N- and O-linked oligosaccharide structures found in various yeast species. Biochim Biophys Acta 1426:227–237PubMedGoogle Scholar
  4. Kato M, Maeda H, Kawakami M, Shiraga S, Ueda M (2005) Construction of a selective cleavage system for a protein displayed on the cell surface of yeast. Appl Microbiol Biotechnol 69:423–427PubMedCrossRefGoogle Scholar
  5. Kondo A, Ueda M (2004) Yeast cell-surface display—applications of molecular display. Appl Microbiol Biotechnol 64:28–40PubMedCrossRefGoogle Scholar
  6. Kusser KL, Randall TD (2003) Simultaneous detection of EGFP and cell surface markers by fluorescence microscopy in lymphoid tissues. J Histochem Cytochem 51:5–14PubMedGoogle Scholar
  7. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685PubMedCrossRefGoogle Scholar
  8. Mergler M, Wolf K, Zimmermann M (2004) Development of a bisphenol A-adsorbing yeast by surface display of the Kluyveromyces yellow enzyme on Pichia pastoris. Appl Microbiol Biotechnol 63:418–421PubMedCrossRefGoogle Scholar
  9. Scott JK, Smith GP (1990) Searching for peptide ligands with an epitope library. Science 249:386–390PubMedCrossRefGoogle Scholar
  10. Stahl S, Uhlen M (1997) Bacterial surface display: trends and progress. Trends Biotechnol 15:185–192PubMedCrossRefGoogle Scholar
  11. Steidler L, Viaene J, Fiers W, Remaut E (1998) Functional display of a heterologous protein on the surface of Lactococcus lactis by means of the cell wall anchor of Staphylococcus aureus protein A. Appl Environ Microbiol 64:342–345PubMedGoogle Scholar
  12. Tanino T, Fukuda H, Kondo A (2006) Construction of a Pichia pastoris cell-surface display system using Flo1p anchor system. Biotechnol Prog 22:989–993PubMedCrossRefGoogle Scholar
  13. Washida M, Takahashi S, Ueda M, Tanaka A (2001) Spacer-mediated display of active lipase on the yeast cell surface. Appl Microbiol Biotechnol 56:681–686PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Qingjie Wang
    • 1
  • Lei Li
    • 1
  • Min Chen
    • 1
  • Qingsheng Qi
    • 1
  • Peng George Wang
    • 1
  1. 1.State Key Laboratory of Microbial Technology, Life Science SchoolShandong UniversityJinanP.R. China

Personalised recommendations