Biotechnology Letters

, Volume 29, Issue 8, pp 1255–1262 | Cite as

Purification and in vitro refolding of maize chloroplast transglutaminase over-expressed in Escherichia coli

  • Patricia K. Carvajal-Vallejos
  • Alexandre Campos
  • Pablo Fuentes-Prior
  • Enrique Villalobos
  • André M. Almeida
  • Eduard Barberà
  • José María Torné
  • Mireya Santos
Original Research Paper

Abstract

In contrast to mammalian transglutaminases (TGs), plant members of the superfamily are poorly characterized. In order to produce pure and active TG for its functional and structural studies, variants of maize chloroplast transglutaminase (TGZ, Patent WWO03102128) were sub-cloned into a pET28 vector and overexpressed in Escherichia coli BL21 (DE3) cells. The recombinant proteins were present mainly as insoluble inclusion bodies. The TGZ4p variant with four B-type repeats (Mr∼55 kDa), was affinity purified from urea-solubilized inclusion bodies. TGZ4p was refolded by rapid dilution in a Ca2+- and guanidine-containing buffer. Active TGZ4p shows the general catalytic characteristics described for other TGs.

Keywords

Escherichia coli Maize chloroplast Purification Refolding Transglutaminase 

Supplementary material

References

  1. Armstrong N, De Lencastre A, Gouaux E (1999) A new protein folding screen: Application to the ligand binding domains of a glutamate and kainate receptor and to lysozyme and carbonic anhydrase. Protein Sci 8:1475–1483PubMedGoogle Scholar
  2. Bernet E, Claparols I, Dondini L, Santos M, Serafini-Fracassini D, Torné JM (1999) Changes in polyamine content, arginine and ornithine decarboxylases and transglutaminase activities during light/dark phases (of initial differentiation) in maize calluses and their chloroplasts. Plant Physiol Biochem 37:899–909CrossRefGoogle Scholar
  3. Clarke LA, Rebelo CS, Gonçalves J, Boavida MG, Jordan P (2001) PCR amplification introduces errors into mononucleotide and dinucleotide repeat sequences. Mol Pathol 54:351–353PubMedCrossRefGoogle Scholar
  4. Consoli L, Damerval C. (2001) Quantification of individual zein isoforms resolved by two-dimensional electrophoresis: Genetic variability in 45 maize inbred lines. Electrophoresis 22:2983–2989PubMedCrossRefGoogle Scholar
  5. Cortez J, Bonner PL, Griffin M (2004) Application of transglutaminases in the modification of wool textiles. Enz Microb Tech 34:64–72CrossRefGoogle Scholar
  6. Della Mea M, Caparrós-Ruiz D, Claparols I, Serafini-Fracassini D, Rigau J (2004) AtPng1p. The first plant transglutaminase. Plant Physiol 135:2046–2054PubMedCrossRefGoogle Scholar
  7. Hausch F, Halttunen T, Mäki M, Khosla C (2005) Design, synthesis and evaluation of gluten peptide analogs as selective inhibitors of human transglutaminase. Chem Biol 10:225–231CrossRefGoogle Scholar
  8. Icekson I, Apelbaum A. (1987) Evidence for transglutaminase activity in plant tissue. Plant Physiol 84:972–974PubMedCrossRefGoogle Scholar
  9. Ichinose A, Souri M, Izumi T, Takahashi N (2000) Molecular and genetic mechanisms of factor XIII A subunit deficiency. Semin Thromb Hemost 26:5–10PubMedCrossRefGoogle Scholar
  10. Ikura K, Kometani T, Sasaki R, Chiba H (1980) Crosslinking of soybean 7S and 11S proteins by transglutaminase. Agric Biol Chem 44:2979–2984Google Scholar
  11. Kim SW, Quinn-Allen MA, Camp JT, Macedo-Ribeiro S, Fuentes-Prior P, Bode W, Kane WH (2000). Identification of functionally important amino acid residues within the C2-domain of human factor V using alanine-scanning mutagenesis. Biochemistry 39:1951–1958PubMedCrossRefGoogle Scholar
  12. Kuraishi C, Yamazaki K, Susa Y (2001) Transglutaminase: its utilization in the food industry. Foods Rev Int 17:221–246CrossRefGoogle Scholar
  13. Lorand L, Graham RM (2003) Transglutaminases: crosslinking enzymes with pleiotropic functions. Nature Rev Mol Cell Biol 4:140–156CrossRefGoogle Scholar
  14. Pandey A, Andersen JS, Mann M (2000) Use of mass spectrometry to study signaling pathways. Sci STKE 2000: PL1Google Scholar
  15. Torné JM, Santos M, Talavera D, Villalobos E (2002) Maize nucleotide sequence coding for a protein with transglutaminase activity and use thereof. ES Patent WO03102128 A1, 11 Dec 2003Google Scholar
  16. Villalobos E, Torné JM, Rigau J, Ollés I, Claparols I, Santos M (2001) Immunogold localization of a transglutaminase related to grana development in different maize cell types. Protoplasma 216:155–163PubMedGoogle Scholar
  17. Villalobos E, Santos M, Talavera D, Rodríguez-Falcón M, Torné JM (2004) Molecular cloning and characterization of a maize transglutaminase complementary DNA. Gene 336:93–104PubMedCrossRefGoogle Scholar
  18. Yee VC, Pedersen LC, Le Trong I, Bishop PD, Stenkamp RE, Teller DC (1994) Three-dimensional structure of a transglutaminase: human blood coagulation factor XIII. Proc Natl Acad Sci USA 91:7296–7300PubMedCrossRefGoogle Scholar
  19. Yokoyama K, Nio N, Kikuchi Y. (2004) Properties and applications of microbial transglutaminase. Appl Microbiol Biotechnol 64:447–454PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Patricia K. Carvajal-Vallejos
    • 1
  • Alexandre Campos
    • 2
  • Pablo Fuentes-Prior
    • 3
  • Enrique Villalobos
    • 4
  • André M. Almeida
    • 2
  • Eduard Barberà
    • 1
  • José María Torné
    • 4
  • Mireya Santos
    • 4
  1. 1.Grup de Química Biològica i BiotecnologiaInstitut Químic de Sarrià – Universitat Ramon LlullBarcelonaSpain
  2. 2.Instituto de Tecnologia Química e BiológicaUniversidade Nova de LisboaOeirasPortugal
  3. 3.Cardiovascular Research CenterICCC-CSIC. Hospital de Sant PauBarcelonaSpain
  4. 4.Institut de Biologia Molecular de BarcelonaConsorci (CSIC-IRTA)BarcelonaSpain

Personalised recommendations