Skip to main content

Advertisement

Log in

Biotechnological challenges of phage therapy

  • Review
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

The challenges for successful launching of a profitable phage therapeutic product include intellectual property rights, safety issues, reproducibility, stability and robustness of the product. A successful and marketable product would be a highly purified bacteriophage preparation containing one or several fully characterized phages, accompanied by optimized methods of administration and backed up by properly controlled efficacy and safety studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abedon ST (2006) Phage ecology. In: Calendar R (ed) The bacteriophages, 2nd edn. New York: Oxford University Press. pp 37–46

    Google Scholar 

  • Abshire TG, Brown JE, Ezzell JW (2005) Production and validation of the use of gamma phage for identification of Bacillus anthracis. J Clin Microbiol 43:4780–4788

    Article  PubMed  CAS  Google Scholar 

  • Ackermann H-W, Tremblay D, Moineau S (2004) Long-Term bacteriophage preservation. World Federation for Culture Collections Newsletter 38:35–40

    Google Scholar 

  • Boratynski J, Syper D, Weber-Dabrowska B et al (2004) Preparation of endotoxin-free bacteriophages. Cell Mol Biol Lett 9:253–259

    PubMed  CAS  Google Scholar 

  • Breitbart M, Hewson I, Felts B et al (2003) Metagenomic analyses of an uncultured viral community from human feces. J Bacteriol 185:6220–6223

    Article  PubMed  CAS  Google Scholar 

  • Brüssow H, Canchaya C, Hardt WD (2004) Phages and the evolution of bacterial pathogens: from genomic rearrangements to lysogenic conversion. Microbiol Mol Biol Rev 68:560–602

    Article  PubMed  CAS  Google Scholar 

  • Canchaya C, Proux C, Fournous G et al (2003) Prophage genomics. Microbiol Mol Biol Rev 67:238–276

    Article  PubMed  CAS  Google Scholar 

  • Carlton RM, Noordman WH, Biswas B et al (2005) Bacteriophage P100 for control of Listeria monocytogenes in foods: genome sequence, bioinformatic analyses, oral toxicity study, and application. Regul Toxicol Pharmacol 43:301–312

    Article  PubMed  CAS  Google Scholar 

  • Clark JR, March JB (2006) Bacteriophages and biotechnology: vaccines, gene therapy and antibacterials. Trends Biotechnol 24:212–218

    Article  PubMed  CAS  Google Scholar 

  • Edwards RA, Rohwer F (2005) Viral metagenomics. Nat Rev Microbiol 3:504–510

    Article  PubMed  CAS  Google Scholar 

  • Eyer L, Pantucek R, Zdrahal Z et al (2006) Structural protein analysis of the polyvalent staphylococcal bacteriophage 812. Proteomics

  • Figueroa-Bossi N, Uzzau S, Maloriol D et al (2001) Variable assortment of prophages provides a transferable repertoire of pathogenic determinants in Salmonella. Mol Microbiol 39:260–271

    Article  PubMed  CAS  Google Scholar 

  • Freeman VJ (1951) Studies on the virulence of bacteriophage-infected strains of Corynebacterium diphtheriae. J Bacteriol 61:675–688

    PubMed  CAS  Google Scholar 

  • Furuse K (1987) Distribution of coliphages in the general environment: general considerations. In: Goyal SM, Gerba CP, Bitton G (eds) Phage ecology. New York: John Wiley & Sons. pp 87–124

    Google Scholar 

  • Garcia-Aljaro C, Muniesa M, Jofre J et al (2006) Newly identified bacteriophages carrying the stx2g Shiga toxin gene isolated from Escherichia coli strains in polluted waters. FEMS Microbiol Lett 258:127–135

    Article  PubMed  CAS  Google Scholar 

  • Gommers-Ampt JH, Borst P (1995) Hypermodified bases in DNA. FASEB J 9:1034–1042

    PubMed  CAS  Google Scholar 

  • Hambly E, Suttle CA (2005) The viriosphere, diversity, and genetic exchange within phage communities. Curr Opin Microbiol 8:444–450

    Article  PubMed  CAS  Google Scholar 

  • Hatfull GF, Pedulla ML, Jacobs-Sera D et al (2006) Exploring the mycobacteriophage metaproteome: phage genomics as an educational platform. PLoS Genet 2:e92

    Article  PubMed  CAS  Google Scholar 

  • Hendrix RW, Smith MC, Burns RN et al (1999) Evolutionary relationships among diverse bacteriophages and prophages: all the world’s a phage. Proc Natl Acad Sci USA 96:2192–2197

    Article  PubMed  CAS  Google Scholar 

  • Ho TD, Figueroa-Bossi N, Wang M et al (2002) Identification of GtgE, a novel virulence factor encoded on the Gifsy-2 bacteriophage of Salmonella enterica serovar Typhimurium. J Bacteriol 184:5234–5239

    Article  PubMed  CAS  Google Scholar 

  • Hodgson DA (2000) Generalized transduction of serotype 1/2 and serotype 4b strains of Listeria monocytogenes. Mol Microbiol 35:312–323

    Article  PubMed  CAS  Google Scholar 

  • Kennedy JEJ, Bitton G (1987) Bacteriophages in foods. In: Goyal SM, Gerba CP, Bitton G (eds). Phage ecology. New York: John Wiley & Sons. pp 289–316

    Google Scholar 

  • Kiljunen S, Hakala K, Pinta E et al (2005) Yersiniophage φR1–37 is a tailed bacteriophage having a 270 kb DNA genome with thymidine replaced by deoxyuridine. Microbiology 151:4093–4102

    Article  PubMed  CAS  Google Scholar 

  • Marza JA, Soothill JS, Boydell P et al (2006) Multiplication of therapeutically administered bacteriophages in Pseudomonas aeruginosa infected patients. Burns 32:644–646

    Article  PubMed  Google Scholar 

  • Matsuzaki S, Rashel M, Uchiyama J et al (2005) Bacteriophage therapy: a revitalized therapy against bacterial infectious diseases. J Infect Chemother 11:211–219

    Article  PubMed  Google Scholar 

  • McGrath S, Fitzgerald GF, van Sinderen D (2004) The impact of bacteriophage genomics. Curr Opin Biotechnol 15:94–99

    Article  PubMed  CAS  Google Scholar 

  • Merril CR, Scholl D, Adhya S (2006) Phage therapy. In: Calendar R (ed). The bacteriophages. 2nd edn. New York: Oxford University Press. pp 725–741

    Google Scholar 

  • Plunkett G 3rd, Rose DJ, Durfee TJ et al (1999) Sequence of Shiga toxin 2 phage 933W from Escherichia coli O157:H7: Shiga toxin as a phage late-gene product. J Bacteriol 181:1767–1778

    PubMed  CAS  Google Scholar 

  • Radany EH, Dornfeld KJ, Sanderson RJ et al (2000) Increased spontaneous mutation frequency in human cells expressing the phage PBS2-encoded inhibitor of uracil-DNA glycosylase. Mutat Res 461:41–58

    PubMed  CAS  Google Scholar 

  • Sakaguchi Y, Hayashi T, Kurokawa K et al (2005) The genome sequence of Clostridium botulinum type C neurotoxin-converting phage and the molecular mechanisms of unstable lysogeny. Proc Natl Acad Sci USA 102:17472–17477

    Article  PubMed  CAS  Google Scholar 

  • Sander M, Schmieger H (2001) Method for host-independent detection of generalized transducing bacteriophages in natural habitats. Appl Environ Microb 67:1490–1493

    Article  CAS  Google Scholar 

  • Sitkiewicz I, Nagiec MJ, Sumby P et al (2006) Emergence of a bacterial clone with enhanced virulence by acquisition of a phage encoding a secreted phospholipase A2. Proc Natl Acad Sci USA 103:16009–16014

    Article  PubMed  CAS  Google Scholar 

  • Sturino JM, Klaenhammer TR (2006) Engineered bacteriophage-defence systems in bioprocessing. Nat Rev Microbiol 4:395–404

    Article  PubMed  CAS  Google Scholar 

  • Takahashi I, Marmur J (1963) Replacement of thymidylic acid by deoxyuridylic acid in the deoxyribonucleic acid of a transducing phage for Bacillus subtilis. Nature 197:794–795

    Article  PubMed  CAS  Google Scholar 

  • Toth I, Schmidt H, Dow M et al (2003) Transduction of porcine enteropathogenic Escherichia coli with a derivative of a shiga toxin 2-encoding bacteriophage in a porcine ligated ileal loop system. Appl Environ Microb 69:7242–7247

    Article  CAS  Google Scholar 

  • Uchida T, Gill DM, Pappenheimer AM Jr (1971) Mutation in the structural gene for diphtheria toxin carried by temperate phage. Nat New Biol 233:8–11

    Article  PubMed  CAS  Google Scholar 

  • Wagner PL, Waldor MK (2002) Bacteriophage control of bacterial virulence. Infect Immun 70:3985–3993

    Article  PubMed  CAS  Google Scholar 

  • Waldor MK, Mekalanos JJ (1996) Lysogenic conversion by a filamentous phage encoding cholera toxin. Science 272:1910–1914

    Article  PubMed  CAS  Google Scholar 

  • Van Tassel RL, Yousten AA (1976) Response of Bacillus thuringiensis to bacteriophage CP-51. Can J Microb 22:583–586

    Article  Google Scholar 

  • van Wamel WJ, Rooijakkers SH, Ruyken M et al (2006) The innate immune modulators staphylococcal complement inhibitor and chemotaxis inhibitory protein of Staphylococcus aureus are located on β-hemolysin-converting bacteriophages. J Bacteriol 188:1310–1315

    Article  PubMed  CAS  Google Scholar 

  • Warren RA (1980) Modified bases in bacteriophage DNAs. Ann Rev Microb 34:137–158

    Article  PubMed  CAS  Google Scholar 

  • Wedgwood RJ, Ochs HD, Davis SD (1975) The recognition and classification of immunodeficiency diseases with bacteriophage φX174. Birth Defects 11:331–338

    PubMed  CAS  Google Scholar 

  • Wommack KE, Colwell RR (2000) Virioplankton: viruses in aquatic ecosystems. Microbiol Mol Biol Rev 64:69–114

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikael Skurnik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Skurnik, M., Pajunen, M. & Kiljunen, S. Biotechnological challenges of phage therapy. Biotechnol Lett 29, 995–1003 (2007). https://doi.org/10.1007/s10529-007-9346-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-007-9346-1

Keywords

Navigation