Biotechnology Letters

, Volume 29, Issue 7, pp 985–994 | Cite as

Enzymatic lysis of microbial cells

  • Oriana Salazar
  • Juan A. Asenjo


Cell wall lytic enzymes are valuable tools for the biotechnologist, with many applications in medicine, the food industry, and agriculture, and for recovering of intracellular products from yeast or bacteria. The diversity of potential applications has conducted to the development of lytic enzyme systems with specific characteristics, suitable for satisfying the requirements of each particular application. Since the first time the lytic enzyme of excellence, lysozyme, was discovered, many investigations have contributed to the understanding of the action mechanisms and other basic aspects of these interesting enzymes. Today, recombinant production and protein engineering have improved and expanded the area of potential applications. In this review, some of the recent advances in specific enzyme systems for bacteria and yeast cells rupture and other applications are examined. Emphasis is focused in biotechnological aspects of these enzymes.


Bacteriolytic Cell lysis Intracellular protein recovering Yeast-lysing enzyme 



The authors would like to thank the CONICYT (Project 1030797) and the Millennium Scientific Initiative (Millennium Institutes) (ICM-P99-031) for financial support.


  1. Adamitsch BF, Karner F, Hampel W (2003) Proteolytic activity of a yeast cell wall lytic Arthrobacter species. Lett Appl Microbiol 36:227–229PubMedGoogle Scholar
  2. Ahmed K, Chohnan S, Ohashi H, Hirata T, Masaki T, Sakiyama F (2003) Purification, bacteriolytic activity and specificity of beta-lytic protease from Lysobacter sp. IB-9374. J Biosci Bioeng 95:27–34PubMedGoogle Scholar
  3. Aminlari M, Ramezani R, Jadidi F (2005) Effect of Maillard-based conjugation with dextran on the functional properties of lysozyme and casein. J Sci Food Agric 85:2617–2624CrossRefGoogle Scholar
  4. Archer DB, Jeenes DJ, MacKenzie DA, Brightwel G, Lambert N, Lowe G, Radford SE, Dobson CM (1990) Hen egg white lysozyme expressed in, and secreted from Aspergillus niger is correctly processed and folded. Bio/Technol 8:741–745CrossRefGoogle Scholar
  5. Asenjo JA, Ventom AM, Huang R-B, Andrews BA (1993) Selective release of recombinant protein particles (VLPs) from yeast using a pure lytic glucanase enzyme. Bio/Technol 11:214–217CrossRefGoogle Scholar
  6. Borysowski J, Weber-Dabrowska B, Gorski A (2006) Bacteriophage endolysins as a novel class of antibacterial agents. Exp Biol Med 231:366–377Google Scholar
  7. Chohnan S, Nonaka J, Teramoto K, Taniguchi K, Kameda Y, Tamura H, Kurusu Y, Norioka S, Masaki T, Sakiyama F (2002) Lysobacter strain with high lysyl endopeptidase production. FEMS Microbiol Lett 213:13–20PubMedCrossRefGoogle Scholar
  8. Conway J, Gaudreau H, Champagne CP (2001) The effect of the addition of proteases and glucanases during yeast autolysis on the production and properties of yeast extracts. Can J Microbiol 47:18–24PubMedCrossRefGoogle Scholar
  9. de Ruyter PGGA, Kuipers OP, Meijer WC, de Vos WM (1997) Food-grade controlled lysis of Lactococcus lactis for accelerated cheese ripening. Nat Biotechnol 15:976–979PubMedCrossRefGoogle Scholar
  10. Donovan DM, Kerr DE, Wall RJ (2005) Engineering disease resistant cattle. Transgenic Res 14:563–567PubMedCrossRefGoogle Scholar
  11. Ezaki T, Saidi SM, Liu SL, Hashimoto Y, Yamamoto H, Yabuuchi E (1990) Rapid procedure to determine the DNA base composition from small amounts of Gram-positive bacteria. FEMS Microbiol Lett 55:127–130PubMedCrossRefGoogle Scholar
  12. Ferrer P (2006) Revisiting the Cellulosimicrobium cellulans yeast-lytic β-1,3-glucanases toolbox: a review. Microb Cell Fact DOI 10.1186/1475-2859-5-10Google Scholar
  13. Ferrer P, Halkier T, Hedegaard L, Savya D, Diers I, Asenjo JA (1996) Nucleotide sequence of a β(1→3) glucanase isoenzyme IIA gene of Oerskovia xanthineolytica LL G109 (Cellulomonas cellulans) and initial characterization of the recombinant enzyme expressed in Bacillus subtilis. J Bacteriol 178:4751–4757PubMedGoogle Scholar
  14. Fischetti VA (2003) Novel method to control pathogenic bacteria on human mucous membranes. Ann N Y Acad Sci 987:207–214PubMedCrossRefGoogle Scholar
  15. Fischetti VA (2005) Bacteriophage lytic enzymes: novel anti-infectives. Trends Microbiol 13:491–496PubMedCrossRefGoogle Scholar
  16. Foster SJ (1995) Molecular characterization and functional analysis of the major autolysin of Staphylococcus aureus 8325/4. J Bacteriol 177:5723–5725PubMedGoogle Scholar
  17. Gacto M, Vicente-Soler J, Cansado J, Villa TG (2000) Characterization of an extracellular enzyme system produced by Micromonospora chalcea with lytic activity on yeast cells. J Appl Microbiol 88:961–967PubMedCrossRefGoogle Scholar
  18. Gaeng S, Scherer S, Neve H, Loessner MJ (2000) Gene cloning and expression and secretion of Listeria monocytogenes bacteriophage-lytic enzymes in Lactococcus lactis. Appl Environ Microbiol 66:2951–2958PubMedCrossRefGoogle Scholar
  19. Gheshlaghi R, Scharer JM, Moo-Young M, Douglas PL (2005) Medium optimization for hen egg white lysozyme production by recombinant Aspergillus niger using statistical methods. Biotechnol Bioeng 90:754–760PubMedCrossRefGoogle Scholar
  20. Gyamerah M, Merichetti G, Adedayo O, Scharer J, Moo-Young M (2002) Bioprocessing strategies for improving hen egg-white lysozyme (HEWL) production by recombinant Aspergillus niger HEWL WT-13–16. Appl Microbiol Biotechnol 60:403–407PubMedCrossRefGoogle Scholar
  21. Iacono VJ, Zove SM, Grossbard BL, Pollock JJ, Fine DH, Greene LS (1985) Lysozyme-mediated aggregation and lysis of the periodontal microorganism Capnocytophaga gingivalis 2010. Infect Immun 47:457–464PubMedGoogle Scholar
  22. Ibrahim HR, Kato A, Kobayashi K (1991) Antimicrobial effects of lysozyme against Gram-negative bacteria due to covalent binding of palmitic acid. J Agric Food Chem 39:2077–2082CrossRefGoogle Scholar
  23. Ibrahim HR, Yamada M, Matsushita K, Kobayashi K, Kato A (1994) Enhanced bactericidal action of lysozyme to Escherichia coli by inserting a hydrophobic pentapeptide into its C terminus. J Biol Chem 269:5059–5063PubMedGoogle Scholar
  24. Ibrahim HR, Matsuzaki T, Aoki T (2001) Genetic evidence that antibacterial activity of lysozyme is independent of its catalytic function. FEBS Lett 506:27–32PubMedCrossRefGoogle Scholar
  25. Jamas S, Rha CK, Sinskey AJ (1986) Morphology of yeast cell wall as affected by genetic manipulation of β(1-6) glycosidic linkage. Biotechnol Bioeng 28:769–784CrossRefPubMedGoogle Scholar
  26. Kerr DE, Wellnitz O (2003) Mammary expression of new genes to combat mastitis. J Anim Sci 81:38–47PubMedGoogle Scholar
  27. Kitamura K (1982) A high yeast cell wall lytic enzyme-producing mutant of Arthrobacter luteus. J Ferment Technol 60:253–256Google Scholar
  28. Kitamura K, Yamamoto Y (1972) Purification and properties of an enzyme, zymolyase, which lyses viable yeast cells. Arch Biochem Biophys 153:403–406PubMedCrossRefGoogle Scholar
  29. Kobayashi R, Miwa T, Yamamoto S, Nagasaki S (1981) Properties and mode of action of (β-1,3-glucanase from Rhizoctonia sp. J Ferment Technol 59:21–26Google Scholar
  30. Kobayashi R, Miwa T, Yamamoto S, Nagasaki S (1982) Preparation and evaluation of an enzyme which degrades yeast cell walls. Appl Microbiol Biotechnol 15:14–19CrossRefGoogle Scholar
  31. Koch AL (1998) Orientation of the peptidoglycan chains in the sacculus of Escherichia coli. Res Microbiol 149:689–701PubMedCrossRefGoogle Scholar
  32. Kollar R, Reinhold BB, Petrakova E, Yeh HJ, Ashwell G, Drgonova J, Kapteyn JC, Klis FM, Cabib E (1997) Architecture of the yeast cell wall. β (1-6)-glucan interconnects mannoprotein, β(1-3)-glucan and chitin. J Biol Chem 272:17762–17775PubMedCrossRefGoogle Scholar
  33. Laible NJ, Germaine GR (1985) Bactericidal activity of human lysozyme, muramidase-inactive lysozyme, and cationic polypeptides against Streptococcus sanguis and Streptococcus faecalis: inhibition by chitin oligosaccharides. Infect Immun 48:720–728PubMedGoogle Scholar
  34. Le Corre S, Andrews BA, Asenjo JA (1985) Use of a lytic enzyme system from Cytophaga sp. in the lysis of Gram-positive bacteria. Enzyme Microb Technol 7:73–78CrossRefGoogle Scholar
  35. Li S, Norioka S, Sakiyama F (1998) Bacteriolytic activity and specificity of Achromobacter beta-lytic protease. J Biochem (Tokyo) 124:332–339Google Scholar
  36. Lipke PN, Ovalle R (1998) Cell wall architecture in yeast: new structure and new challenges. J Bacteriol 180:3735–3740PubMedGoogle Scholar
  37. Loessner MJ (2005) Bacteriophage endolysins-current state of research and applications. Curr Opin Microbiol 8:480–487PubMedCrossRefGoogle Scholar
  38. Loessner MJ, Schneider A, Scherer S (1996) Modified Listeria bacteriophage lysin genes (ply) allow efficient overexpression and one-step purification of biochemically active fusion proteins. Appl Environ Microbiol 62:3057–3060PubMedGoogle Scholar
  39. Loeffler JM, Nelson D, Fischetti VA (2001) Rapid killing of Streptococcus pneumoniae with a bacteriophage cell wall hydrolase. Science 294:2170–2172PubMedCrossRefGoogle Scholar
  40. Loffler J, Hebart H, Schumacher U, Reitze H, Einsele H (1997) Comparison of different methods for extraction of DNA of fungal pathogens from cultures and blood. J Clin Microbiol 35:3311–3312PubMedGoogle Scholar
  41. Lopez R, Gonzalez MP, Garcia E, Garcia JL, Garcia P (2000) Biological roles of two new murein hydrolases of Streptococcus pneumoniae representing examples of module shuffling. Res Microbiol 151:437–443PubMedCrossRefGoogle Scholar
  42. Mainwaring DO, Wiebe MG, Robson GD, Goldrick M, Jeenes DJ, Archer DB, Trinci AP (1999) Effect of pH on hen egg white lysozyme production and evolution of a recombinant strain of Aspergillus niger. J Biotechnol 75:1–10PubMedCrossRefGoogle Scholar
  43. Masschalck B, Michiels CW (2003) Antimicrobial properties of lysozyme in relation to food-borne vegetative bacteria. Crit Rev Microbiol 29:191–214PubMedGoogle Scholar
  44. Masschalck B, Van Houdt R, Van Haver EGR, Michiels CW (2001) Inactivation of Gram-negative bacteria by lysozyme, denatured lysozyme, and lysozyme-derived peptides under high hydrostatic pressure. Appl Environ Microbiol 67:339–344PubMedCrossRefGoogle Scholar
  45. Masschalck B, Deckers D, Michiels CW (2002) Lytic and nonlytic mechanism of inactivation of Gram-positive bacteria by lysozyme under atmospheric and high hydrostatic pressure. J Food Prot 65:1916–1923PubMedGoogle Scholar
  46. Niwa T, Kawamura Y, Katagiri Y, Ezaki TJ (2005) Lytic enzyme, labiase for a broad range of Gram-positive bacteria and its application to analyze functional DNA/RNA. Microbiol Methods 61:251–260CrossRefGoogle Scholar
  47. O’Flaherty S, Coffey A, Meaney W, Fitzgerald GF, Ross RP (2005) The recombinant phage lysin LysK has a broad spectrum of lytic activity against clinically relevant Staphylococci, including methicillin-resistant Staphylococcus aureus. J Bacteriol 187:7161–7164PubMedCrossRefGoogle Scholar
  48. Palumbo JD, Sullivan RF, Kobayashi DY (2003) Molecular characterization and expression in Escherichia coli of three beta-1,3-glucanase genes from Lysobacter enzymogenes strain N4-7. J Bacteriol 185:4362–4370PubMedCrossRefGoogle Scholar
  49. Recsei PA, Gruss AD, Novick RP (1987) Cloning and sequence and expression of the lysostaphin gene from Staphylococcus simulans. Proc Natl Acad Sci USA 84:1127–1131PubMedCrossRefGoogle Scholar
  50. Saeki K, Iwata J, Yamazaki S, Watanabe Y, Tamai Y (1994) Purification and characterization of a yeast lytic β-1,3-glucanase from Oerskovia xanthineolytica TK-1. J Ferment Bioeng 78:407–412CrossRefGoogle Scholar
  51. Salazar O, Molitor J, Lienqueo ME, Asenjo JA (2001) Overproduction, purification and characterization of β-1,3-glucanase type II in Escherichia coli. Protein Exp Purif 23:219–225CrossRefGoogle Scholar
  52. Salazar O, Basso C, Barba P, Orellana C, Asenjo JA (2006) Improvement of the lytic properties of a β-1,3-glucanase by directed evolution. Mol Biotechnol 33:211–220PubMedCrossRefGoogle Scholar
  53. Sava G (1996) Pharmacological aspects and therapeutic applications of lysozymes. EXS 75:433–449PubMedGoogle Scholar
  54. Schlörb C, Ackermann K, Richter C, Wirmer J, Schwalbe H (2005) Heterologous expression of hen egg white lysozyme and resonance assignment of tryptophan side chains in its non-native states. J Biomol NMR 33:95–104PubMedCrossRefGoogle Scholar
  55. Scott JH, Schekman R (1980) Lyticase: endoglucanase and protease activities that act together in yeast cell lysis. J Bacteriol 142:414–423PubMedGoogle Scholar
  56. Scott D, Hammer FE, Szalkucki TJ (1987) Bioconversions: enzyme technology. In: Knorr D (ed) Food biotechnology. Marcel Dekker, New YorkGoogle Scholar
  57. Shen SH, Chrétien P, Bastien L, Slilaty SN (1991) Primary sequence of the glucanase gene from Oerskovia xanthineolytica. J Biol Chem 266:1058–1063PubMedGoogle Scholar
  58. Shimoi H, Iimura Y, Obata T, Tadenuma M (1992) Molecular structure of Rarobacter faecitabidus protease I. A yeast-lytic serine protease having mannose-binding activity. J Biol Chem 267:25189–25195PubMedGoogle Scholar
  59. Smith TJ, Blackman SA, Foster SJ (2000) Autolysins of Bacillus subtilis: multiple enzymes with multiple functions. Microbiology 146:249–262PubMedGoogle Scholar
  60. Touch V, Hayakawa S, Fukada K, Aratani Y, Sun Y (2003) Preparation of antimicrobial reduced lysozyme compatible in food applications. J Agric Food Chem 51:5154–5161PubMedCrossRefGoogle Scholar
  61. Ventom AM, Asenjo JA (1990) Two extracellular proteases from Oerskovia xanthineolytica LL-G109. J Biotechnol Tech 4:171–176Google Scholar
  62. Ventom AM, Asenjo JA (1991) Characterization of yeast lytic enzymes from Oerskovia xanthineolytica LL-G109. Enzyme Microb Technol 13:71–75CrossRefGoogle Scholar
  63. Wang IN, Smith DL, Young R (2000) Holins: the protein clocks of bacteriophage infections. Annu Rev Microbiol 54:799–825PubMedCrossRefGoogle Scholar
  64. Yang YG, Tong Q, Hu TS, Qian YC, Yang SL, Gong Y (2000) The application of a novel lytic system to the recovery of recombinant proteins in E. coli. Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai) 32:211–216Google Scholar
  65. Zhang N, Gardner DCJ, Oliver SG, Stateva LI (1999) Genetically controlled cell lysis in the yeast Saccharomyces cerevisiae. Biotechnol Bioeng 64:607–615PubMedCrossRefGoogle Scholar
  66. Zomer E, Er-El Z, Rokem JS (1987) Production of intracellular enzymes by enzymatic treatment of yeast. Enzyme Microb Technol 9:281–284CrossRefGoogle Scholar
  67. Zukaite V, Biziulevicius GA (2000) Acceleration of hyaluronidase production in the course of batch cultivation of Clostridium perfringens can be achieved with bacteriolytic enzymes. Lett Appl Microbiol 30:203–206PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  1. 1.Centre for Chemical Engineering and Biotechnology, Department of Chemical Engineering and BiotechnologyUniversity of ChileSantiagoChile

Personalised recommendations