Biotechnology Letters

, Volume 29, Issue 6, pp 895–900 | Cite as

Introduction to bioreactors of shake-flask inocula leads to development of oxidative stress in Aspergillus niger

  • Andrew O’Donnell
  • Yantao Bai
  • Zhonghu Bai
  • Brian McNeil
  • Linda M. Harvey
Original Research Paper

Abstract

Inoculation of bioreactors with shake-flask cultures present the organism with an immediate shift from an environment with little O2 to one in which O2 is typically at 100% saturation. The inoculation of such shake-flasks cultures into bioreactors sparged with 1 vvm air or 1 vvm air/O2 mix i.e. 50% O2 enrichment is an oxidatively stressful event, as judged by immediate increases in the intracellular concentrations of superoxide anion radical (O2·−) (from 4,600 to 11,600 RLU mg DCW−1 and 5,500 to 23,000 RLU mg DCW−1 respectively) and changes in the activities of the major antioxidant enzymes superoxide dismutase and catalase in all cultures. There are further effects on metabolic indices, particularly decreased nutrient consumption in oxygenated cultures (from 0.16 to 0.12 g starch g DCW h−1) and decreased protein production, indicating that inoculation of the bioreactor exerts a global burden on the cellular metabolic networks.

Keywords

Filamentous fungi Lag phase Oxidative stress Oxygen enrichment 

References

  1. Aebi H (1984) Catalase in vitro. Meth Enzymol 105:121–126PubMedGoogle Scholar
  2. Archer DB, Jeenes DJ, MacKenzie DA et al (1990a) Hen egg white lysozyme expressed in, and secreted from, Aspergillus niger is correctly processed and folded. Bio Technology 8:741–745Google Scholar
  3. Bai Z, Harvey LM, McNeil B (2001) Use of the chemiluminescent probe lucigenin to monitor the production of the superoxide anion radical in a recombinant Aspergillus niger (B1-D). Biotechnol Bioeng 75:204–211PubMedCrossRefGoogle Scholar
  4. Bai Z, Harvey LM, McNeil B (2003) Physiological responses of chemostat cultures of Aspergillus niger (B1-D) to simulated and actual oxidative stress. Biotechnol Bioeng 82:691–701PubMedCrossRefGoogle Scholar
  5. Bai Z, Harvey LM, White S, McNeil B (2004) Effects of oxidative stress on production of heterologous and native protein, and culture morphology in batch and chemostat cultures of Aspergillus niger (B1-D). Enzyme Microb Technol 34:10–21CrossRefGoogle Scholar
  6. Dalton TP, Shertzer HG, Puga A (1999) Regulation of gene expression by reactive oxygen. Annu Rev Pharmacol Toxicol 39:67–101PubMedCrossRefGoogle Scholar
  7. Fridovich I (1978) The biology of oxygen radicals. Science 201:875–880PubMedCrossRefGoogle Scholar
  8. Gottlieb SF (1971) Effect of hyperbaric oxygen on microorganisms. Annu Rev Microbiol 25:111–152PubMedCrossRefGoogle Scholar
  9. Grapo JD, McCord JM, Fridovich I (1978) Preparation and assay of superoxide dismutase. Meth Enzymol 53:382–393CrossRefGoogle Scholar
  10. Gupta A, Rao G (2003) A study of oxygen transfer in shake-flasks using a non-invasive oxygen sensor. Biotechnol Bioeng 84:351–358PubMedCrossRefGoogle Scholar
  11. Halliwell B, Gutteridge JMC (1999) Free radicals in biology and medicine. Oxford University Press, OxfordGoogle Scholar
  12. Kreiner M, Harvey LM, McNeil B (2002) Oxidative stress response of a recombinant Aspergillus niger to exogenous menadione and H2O2 addition. Enzyme Microb Technol 30:346–353CrossRefGoogle Scholar
  13. Kreiner M, Harvey LM, McNeil B (2003) Morphological and enzymatic responses of a recombinant Aspergillus niger to oxidative stressors in chemostat cultures. J Biotechnol 100:251–260PubMedCrossRefGoogle Scholar
  14. Manjula-Rao Y, Sureshkumar GK (2001) Improvement in bioreactor productivities using free radicals: HOCl-induced overproduction of xanthan gum from Xanthamonas campestris and its mechanism. Biotechnol Bioeng 72:62–68CrossRefGoogle Scholar
  15. Nystrom T (1998) To be or not to be: the ultimate decision of the growth-arrested bacterial cell. FEMS Microbiol Rev 21:283–290CrossRefGoogle Scholar
  16. Sies H (1993) Strategies of antioxidant defense. Eur J Biochem 215:213–219PubMedCrossRefGoogle Scholar
  17. Storz G, Imlay JA (1999) Oxidative stress. Curr Opin Microbiol 2:188–194PubMedCrossRefGoogle Scholar
  18. Turrens JF, Alexandre A, Lehninger AL (1985) Ubisemiquinone is the electron donor for superoxide formation by complex III of heart mitochondria. Arch Biochem Biophys 237:408–414PubMedCrossRefGoogle Scholar
  19. Wongwicharn A, Harvey LM, McNeil B (1999a) Secretion of heterologous and native proteins, growth and morphology in batch cultures of Aspergillus niger B1-D at varying agitation rates. J Chem Technol Biotechnol 74:821–828CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Andrew O’Donnell
    • 1
  • Yantao Bai
    • 2
  • Zhonghu Bai
    • 3
  • Brian McNeil
    • 1
  • Linda M. Harvey
    • 1
  1. 1.Strathclyde Fermentation Centre, Department of BioscienceUniversity of StrathclydeGlasgowUK
  2. 2.Medway School of MedicineUniversity of Greenwich at MedwayKentUK
  3. 3.Department of Technical SupportOrtho-Clinical Diagnostics (A Johnson & Johnson Company)CardiffUK

Personalised recommendations