Biotechnology Letters

, Volume 29, Issue 3, pp 487–493 | Cite as

Reductive transformation of parathion and methyl parathion by Bacillus sp.

  • Chao Yang
  • Ming Dong
  • Yulan Yuan
  • Yao Huang
  • Xinmin Guo
  • Chuanling Qiao
Original Research Paper

Abstract

Based on the results of phenotypic features, phylogenetic similarity of 16S rRNA gene sequences and BIOLOG test, a soil bacterium was identified as Bacillus sp. DM-1. Using either growing cells or a cell-free extract, it transformed parathion and methyl parathion to amino derivatives by reducing the nitro group. Pesticide transformation by a cell-free extract was specifically inhibited by three nitroreductase inhibitors, indicating the presence of nitroreductase activity. The nitroreductase activity was NAD(P)H-dependent, O2-insensitive, and exhibited the substrate specificity for parathion and methyl parathion. Reductive transformation significantly decreased the toxicity of pesticides.

Keywords

Bacillus Methyl parathion Nitroreductase activity Parathion Reductive Transformation 

Notes

Acknowledgements

This work was supported by the 863 Hi-Tech Research and Development Program of the People’s Republic of China (No. 2005AA601020).

References

  1. Barton JW, Kuritz T, O’Connor LE, Ma CY, Maskarinec MP, Davison BH (2004) Reductive transformation of methyl parathion by the cyanobacterium Anabaena sp. strain PCC7120. Appl Microbiol Biotechnol 65:330–335PubMedCrossRefGoogle Scholar
  2. Bossche HV, Koymans L (1998) Cytochrome P450 in fungi. Mycoses 41:32–38CrossRefGoogle Scholar
  3. Bryant DW, McCalla DR, Leeksma M, Laneuville P (1981) Type I nitroreductases of Escherichia coli. Can J Microbiol 27:81–86PubMedCrossRefGoogle Scholar
  4. Chaudhry GR, Ali AN, Wheeler WB (1988) Isolation of a methyl parathion-degrading Pseudomonas sp. that possesses DNA homologous to the opd gene from a Flavobacterium sp. Appl Environ Microbiol 54:288–293PubMedGoogle Scholar
  5. Esteve-Núňez A, Caballero A, Ramos JL (2001) Biological degradation of 2,4,6-trinitrotoluene. Microbiol Mol Biol Rev 65:335–352PubMedCrossRefGoogle Scholar
  6. Goronzy T, Drzyzga O, Kahl MW, Bruns-Nagel D, Breitung J, von Loew E, Blotevogel KH (1994) Microbial degradation of explosives and related compounds. Crit Rev Microbiol 20:265–284Google Scholar
  7. Hawkins KI, Knittle CE (1972) Comparison of acetylcholinesterase determinations by the Michel and Ellman methods. Anal Chem 44:416–417PubMedCrossRefGoogle Scholar
  8. Holt JG, Krieg NR, Sneath PH, Staley JT, Williams ST (1994) Bergey’s manual of determinative bacteriology, 9th edn. Williams and Wilkins, Baltimore, MDGoogle Scholar
  9. Koder RL, Miller AF (1998) Steady-state kinetic mechanism, stereospecifity, substrate and inhibitor specifity of Enterobacter cloacae nitroreductase. Biochim Biophys Acta 1387:395–405PubMedGoogle Scholar
  10. Munnecke DM, Hsieh DPH (1976) Pathway of microbial metabolism of parathion. Appl Environ Microbiol 31:63–69PubMedGoogle Scholar
  11. Rani NL, Lalithakumari D (1994) Degradation of methyl parathion by Pseudomonas putida. Can J Microbiol 40:1000–1006PubMedCrossRefGoogle Scholar
  12. Rosenberg A, Alexander M (1979) Microbial cleavage of various organophosphorus insecticides. Appl Environ Microbiol 37:886–891PubMedGoogle Scholar
  13. Serdar CM, Gibson DT, Munnecke DM, Lancaster JH (1982) Plasmid involvement in parathion hydrolysis by Pseudomonas diminuta. Appl Environ Microbiol 44:246–249PubMedGoogle Scholar
  14. Sethunathan N, Yoshida T (1973) Parathion degradation in submerged rice soils in the Philippines. J Agric Food Chem 21:504–506PubMedCrossRefGoogle Scholar
  15. Singh BK, Walker A (2006) Microbial degradation of organophosphorus compounds. FEMS Microbiol Rev 30:428–471PubMedCrossRefGoogle Scholar
  16. Spain JC (1995) Biodegradation of nitroaromatic compounds. Annu Rev Microbiol 49:523–555PubMedCrossRefGoogle Scholar
  17. Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703PubMedGoogle Scholar
  18. Zenno S, Kobori T, Tanokura M, Saigo K (1998) Purification and characterization of NfrA1, a Bacillus subtilis nitro/flavin reductase capable interacting with the bacterial luciferase. Biosci Biotechnol Biochem 62:1978–1987PubMedCrossRefGoogle Scholar
  19. Zenno S, Koike H, Kumar AK, Jayaraman R, Tanokura M, Saigo K (1996a) Biochemical characterization of NfsA, a Escherichia coli major nitroreductase exhibiting a high amino acid sequence homology to Frp, a Vibrio harveyi, flavin oxidoreductase. J Bacteriol 178:4508–4514Google Scholar
  20. Zenno S, Koike H, Tanokura M, Saigo K (1996b) Gene cloning, purification, and characterization of NfsB, a minor oxygen-insensitive nitroreductase from Escherichia coli, similar in biochemical properties to FRaseI, the major flavin reductase in Vibrio fischeri. J Biochem 120:736–744Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Chao Yang
    • 1
    • 2
  • Ming Dong
    • 3
  • Yulan Yuan
    • 1
  • Yao Huang
    • 1
  • Xinmin Guo
    • 3
  • Chuanling Qiao
    • 1
  1. 1.State Key Laboratory of Integrated Management of Pest Insects & Rodents, Institute of ZoologyChinese Academy of SciencesBeijingP.R. China
  2. 2.Graduate School of the Chinese Academy of SciencesBeijingP.R. China
  3. 3.School of EnvironmentRenmin UniversityBeijingP.R. China

Personalised recommendations