Biotechnology Letters

, Volume 28, Issue 22, pp 1827–1833 | Cite as

Multiple glycerol shocks increase the calcium phosphate transfection of non-synchronized CHO cells

  • Frederic Grosjean
  • Martin Bertschinger
  • David L. Hacker
  • Florian M. Wurm
Original Research Paper

Abstract

The exposure of CHO DG44 cells to an osmotic shock, after DNA uptake, results in a cellular volume decrease of approx. 55%. Repetitive osmotic shocks targeted different sub-populations of cells as was demonstrated using two different fluorescent reporter genes. Also the exposure of a calcium phosphate–DNA coprecipitate to high osmolarity in vitro caused the release of the DNA from the precipitate. The results demonstrate the importance of the osmotic shock on the efficient delivery of plasmid DNA to the nucleus of CHO cells following calcium phosphate-mediated transfection.

Keywords

Calcium phosphate Cellular volume decrease Glycerol shock Osmotic effect Plasmid release Transfection 

References

  1. Batard P, Jordan M, Wurm F (2001) Transfer of high copy number plasmid into mammalian cells by calcium phosphate transfection. Gene 270:61–68PubMedCrossRefGoogle Scholar
  2. Brunner S, Sauer T, Carotta S, Cotten M, Saltik M, Wagner E (2000) Cell cycle dependence of gene transfer by lipoplex, polyplex and recombinant adenovirus. Gene Ther 7:401–407PubMedCrossRefGoogle Scholar
  3. Capecchi MR (1980) High efficiency transformation by direct microinjection of DNA into cultured mammalian cells. Cell 22:479–488PubMedCrossRefGoogle Scholar
  4. Dowty ME, Williams P, Zhang G, Hagstrom JE, Wolff JA (1995) Plasmid DNA entry into postmitotic nuclei of primary rat myotubes. Proc Natl Acad Sci USA 92:4572–4576PubMedCrossRefGoogle Scholar
  5. Graham FL, Van Der Eb AJ (1973) A new technique for the assay of infectivity of human adenovirus 5 DNA. Virology 52:456–467PubMedCrossRefGoogle Scholar
  6. Grosjean F, Batard P, Jordan M, Wurm F (2002) S-phase synchronized CHO cells show elevated transfection efficiency using CaPi. Cytotechnology 38(1–3):57–62CrossRefPubMedGoogle Scholar
  7. Jordan M, Schallhorn A, Wurm F (1996) Transfecting mammalian cells: optimization of critical parameters affecting calcium-phosphate precipitate formation. Nucl Acids Res 24:596–601PubMedCrossRefGoogle Scholar
  8. Lechardeur D, Sohn KJ, Haardt M, Joshi PB, Monck M, Graham RW, Beatty B, Squire J, O’Brodovich H, Lukacs GL (1999) Metabolic instability of plasmid DNA in the cytosol: a potential barrier to gene transfer. Gene Ther 6:482–497PubMedCrossRefGoogle Scholar
  9. Loyter A, Scangos G, Juricek D, Keene D, Ruddle FH (1982a) Mechanisms of DNA entry into mammalian cells. II. Phagocytosis of calcium phosphate DNA co-precipitate visualized by electron microscopy. Exp Cell Res 139:223–234CrossRefGoogle Scholar
  10. Loyter A, Scangos G, Ruddle FH (1982b) Mechanisms of DNA uptake by mammalian cells: fate of exogenously added DNA monitored by the use of fluorescent dyes. Proc Natl Acad Sci USA 79:422–426CrossRefGoogle Scholar
  11. Mortimer I, Tam P, MacLachlan I, Graham RW, Saravolac EG, Joshi PB (1999) Cationic lipid-mediated transfection of cells in culture requires mitotic activity. Gene Ther 6:403–411PubMedCrossRefGoogle Scholar
  12. O’Mahoney JV, Adams TE (1994) Optimization of experimental variables influencing reporter gene expression in hepatoma cells following calcium phosphate transfection. DNA Cell Biol 13:1227–1232PubMedCrossRefGoogle Scholar
  13. Orrantia E, Chang PL (1990) Intracellular distribution of DNA internalized through calcium phosphate precipitation. Exp Cell Res 190:170–174PubMedCrossRefGoogle Scholar
  14. Sabelnikov AG (1994) Nucleic acid transfer through cell membranes: towards the underlying mechanisms. Prog Biophys Mol Biol 62:119–152PubMedCrossRefGoogle Scholar
  15. Wake CT, Gudewicz T, Porter T, White A, Wilson JH (1984) How damaged is the biologically active subpopulation of transfected DNA? Mol Cell Biol 4:387–398PubMedGoogle Scholar
  16. Wilke M, Fortunati E, Van Den Broek M, Hoogeveen AT, Scholte BJ (1996) Efficacy of a peptide-based gene delivery system depends on mitotic activity. Gene Ther 3:1133–1142PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2006

Authors and Affiliations

  • Frederic Grosjean
    • 1
  • Martin Bertschinger
    • 2
  • David L. Hacker
    • 3
  • Florian M. Wurm
    • 3
  1. 1.Institute of BiochemistryEpalingesSwitzerland
  2. 2.Glenmark Pharmaceuticals SA.La Chaux-de-FondsSwitzerland
  3. 3.Laboratory of Cellular BiotechnologyÉcole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland

Personalised recommendations