Biotechnology Letters

, Volume 28, Issue 21, pp 1701–1712

Bacterial alginates: from biosynthesis to applications

Review

Abstract

Alginate is a polysaccharide belonging to the family of linear (unbranched), non-repeating copolymers, consisting of variable amounts of β-d-mannuronic acid and its C5-epimer α- l-guluronic acid linked via β-1,4-glycosidic bonds. Like DNA, alginate is a negatively charged polymer, imparting material properties ranging from viscous solutions to gel-like structures in the presence of divalent cations. Bacterial alginates are synthesized by only two bacterial genera, Pseudomonas and Azotobacter, and have been extensively studied over the last 40 years. While primarily synthesized in form of polymannuronic acid, alginate undergoes chemical modifications comprising acetylation and epimerization, which occurs during periplasmic transfer and before final export through the outer membrane. Alginate with its unique material properties and characteristics has been increasingly considered as biomaterial for medical applications. The genetic modification of alginate producing microorganisms could enable biotechnological production of new alginates with unique, tailor-made properties, suitable for medical and industrial applications.

Keywords

alginate alginate polymerisation alginate secretion Azotobacter biomaterial biopolymer guluronic acid mannuronic acid Pseudomonas 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aarons SJ, Sutherland IW, Chakrabarty AM, Gallagher MP (1997) A novel gene, algK, from the alginate biosynthesis cluster of Pseudomonas aeruginosa. Microbiology 143(Pt 2):641–652PubMedGoogle Scholar
  2. Akama H, Matsuura T, Kashiwagi S, Yoneyama H, Narita S, Tsukihara T, Nakagawa A, Nakae T (2004) Crystal structure of the membrane fusion protein, MexA, of the multidrug transporter in Pseudomonas aeruginosa. J Biol Chem 279(25):25939–25942PubMedCrossRefGoogle Scholar
  3. Albrecht MT, Schiller NL (2005) Alginate lyase (AlgL) activity is required for alginate biosynthesis in Pseudomonas aeruginosa. J Bacteriol 187(11):3869–3872PubMedCrossRefGoogle Scholar
  4. Amikam D, Galperin MY (2006) PilZ domain is part of the bacterial c-di-GMP binding protein. Bioinformatics 22(1):3–6PubMedCrossRefGoogle Scholar
  5. Bakkevig K, Sletta H, Gimmestad M, Aune R, Ertesvåg H, Degnes K, Christensen BE, Ellingsen TE, Valla S (2005) Role of the Pseudomonas fluorescens alginate lyase (AlgL) in clearing the periplasm of alginates not exported to the extracellular environment. J Bacteriol 187(24):8375–8384PubMedCrossRefGoogle Scholar
  6. Bjerkan TM, Lillehov BE, Strand WI, Skjåk-Bræk G, Valla S, Ertesvåg H (2004) Construction and analyses of hybrid Azotobacter vinelandii mannuronan C-5 epimerases with new epimerization pattern characteristics. Biochem J 381(Pt 3):813–821PubMedGoogle Scholar
  7. Boyd A, Ghosh M, May TB, Shinabarger D, Keogh R, Chakrabarty AM (1993) Sequence of the algL gene of Pseudomonas aeruginosa and purification of its alginate lyase product. Gene 131(1):1–8PubMedCrossRefGoogle Scholar
  8. Campos M, Martinez-Salazar JM, Lloret L, Moreno S, Nunez C, Espin G, Soberon-Chavez G (1996) Characterization of the gene coding for GDP-mannose dehydrogenase (algD) from Azotobacter vinelandii. J Bacteriol 178(7):1793–1799PubMedGoogle Scholar
  9. Chitnis CE, Ohman DE (1990) Cloning of Pseudomonas aeruginosa algG, which controls alginate structure. J Bacteriol 172(6):2894–2900PubMedGoogle Scholar
  10. Chitnis CE, Ohman DE (1993) Genetic analysis of the alginate biosynthetic gene cluster of Pseudomonas aeruginosa shows evidence of an operonic structure. Mol Microbiol 8(3):583–593PubMedGoogle Scholar
  11. Costerton JW (2001) Cystic fibrosis pathogenesis and the role of biofilms in persistent infection. Trends Microbiol 9(2):50–52PubMedCrossRefGoogle Scholar
  12. Donlan RM, Costerton JW (2002) Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev 15(2):167–193PubMedCrossRefGoogle Scholar
  13. Ertesvåg H, Høidal HK, Schjerven H, Svanem BI, Valla S (1999) Mannuronan C-5-epimerases and their application for in vitro and in vivo design of new alginates useful in biotechnology. Metab Eng 1(3):262–269PubMedCrossRefGoogle Scholar
  14. Favre-Bonte S, Pache JC, Robert J, Blanc D, Pechere JC, van Delden C (2002) Detection of Pseudomonas aeruginosa cell-to-cell signals in lung tissue of cystic fibrosis patients. Microb Pathog 32(3):143–147PubMedCrossRefGoogle Scholar
  15. Firoved AM, Deretic V (2003) Microarray analysis of global gene expression in mucoid Pseudomonas aeruginosa. J Bacteriol 185(3):1071–1081PubMedCrossRefGoogle Scholar
  16. Franklin MJ, Ohman DE (1993) Identification of algF in the alginate biosynthetic gene cluster of Pseudomonas aeruginosa which is required for alginate acetylation. J Bacteriol 175(16):5057–5065PubMedGoogle Scholar
  17. Franklin MJ, Ohman DE (1996) Identification of algI and algJ in the Pseudomonas aeruginosa alginate biosynthetic gene cluster which are required for alginate O acetylation. J Bacteriol 178(8):2186–2195PubMedGoogle Scholar
  18. Franklin MJ, Ohman DE (2002) Mutant analysis and cellular localization of the AlgI, AlgJ, and AlgF proteins required for O acetylation of alginate in Pseudomonas aeruginosa. J Bacteriol 184(11):3000–3007PubMedCrossRefGoogle Scholar
  19. Franklin MJ, Chitnis CE, Gacesa P, Sonesson A, White DC, Ohman DE (1994) Pseudomonas aeruginosa AlgG is a polymer level alginate C5-mannuronan epimerase. J Bacteriol 176(7):1821–1830PubMedGoogle Scholar
  20. Franklin MJ, Douthit SA, McClure MA (2004) Evidence that the algI/algJ gene cassette, required for O acetylation of Pseudomonas aeruginosa alginate, evolved by lateral gene transfer. J Bacteriol 186(14):4759– 4773PubMedCrossRefGoogle Scholar
  21. Gacesa P, Russell NJ (1990) The structure and property of alginate. In: Pseudomonas infection and alginates. London, Chapman & Hall, pp 29–49Google Scholar
  22. Gimmestad M, Sletta H, Ertesvåg H, Bakkevig K, Jain S, Suh S-J, Skjåk-Bræk G, Ellingsen TE, Ohman DE, Valla S (2003) The Pseudomonas fluorescens AlgG protein, but not its mannuronan C-5-epimerase activity, is needed for alginate polymer formation. J Bacteriol 185:3515–3523PubMedCrossRefGoogle Scholar
  23. Goldberg JB, Hatano K, Pier GB (1993) Synthesis of lipopolysaccharide O side chains by Pseudomonas aeruginosa PAO1 requires the enzyme phosphomannomutase. J Bacteriol 175:1605–1611PubMedGoogle Scholar
  24. Grabert E, Wingender J, Winkler UK (1990) An outer membrane protein characteristic of mucoid strains of Pseudomonas aeruginosa. FEMS Microbiol Lett 56(1–2):83–87PubMedCrossRefGoogle Scholar
  25. Gutsche J, Remminghorst U, Rehm BHA (2006) Biochemical analysis of alginate biosynthesis protein AlgX from Pseudomonas aeruginosa: purification of an AlgX-MucD (AlgY) protein complex. Biochimie 88(3–4):245–251PubMedCrossRefGoogle Scholar
  26. Hall-Stoodley L, Costerton JW, Stoodley P (2004) Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol 2(2):95–108PubMedCrossRefGoogle Scholar
  27. Høidal HK, Glaerum Svanem BI, Gimmestad M, Valla S (2000) Mannuronan C-5 epimerases and cellular differentiation of Azotobacter vinelandii. Environ Microbiol 2(1):27–38PubMedCrossRefGoogle Scholar
  28. Jain S, Ohman DE (1998) Deletion of algK in mucoid Pseudomonas aeruginosa blocks alginate polymer formation and results in uronic acid secretion. J Bacteriol 180(3):634–641PubMedGoogle Scholar
  29. Jain S, Ohman DE (2005) Role of an alginate lyase for alginate transport in mucoid Pseudomonas aeruginosa. Infect Immun 73(10):6429–6436PubMedCrossRefGoogle Scholar
  30. Jain S, Franklin MJ, Ertesvåg H, Valla S, Ohman DE (2003) The dual roles of AlgG in C-5-epimerization and secretion of alginate polymers in Pseudomonas aeruginosa. Mol Microbiol 47(4):1123–1133PubMedCrossRefGoogle Scholar
  31. King A, Strand B, Rokstad AM, Kulseng B, Andersson A, Skjåk-Bræk G, Sandler S (2003) Improvement of the biocompatibility of alginate/poly-l-lysine/alginate microcapsules by the use of epimerized alginate as a coating. J Biomed Mater Res A 64(3):533–539PubMedCrossRefGoogle Scholar
  32. Kulseng B, Skjåk-Bræk G, Ryan L, Andersson A, King A, Faxvaag A, Espevik T (1999) Transplantation of alginate microcapsules: generation of antibodies against alginates and encapsulated porcine islet-like cell clusters. Transplantation 67(7):978–984PubMedCrossRefGoogle Scholar
  33. Leid JG, Willson CJ, Shirtliff ME, Hassett DJ, Parsek MR, Jeffers AK (2005) The Exopolysaccharide alginate protects Pseudomonas aeruginosa biofilm bacteria from IFN-γ-mediated macrophage killing. J Immunol 175(11):7512–7518PubMedGoogle Scholar
  34. Lin TY, Hassid WZ (1966) Pathway of alginic acid synthesis in the marine brown alga, Fucus gardneri Silva. J Biol Chem 241(22):5284–5297PubMedGoogle Scholar
  35. Lloret L, Barreto R, Leon R, Moreno S, Martinez-Salazar J, Espin G, Soberon-Chavez G (1996) Genetic analysis of the transcriptional arrangement of Azotobacter vinelandii alginate biosynthetic genes: identification of two independent promoters. Mol Microbiol 21(3): 449–457PubMedGoogle Scholar
  36. Mathee K, Sternberg C, Ciofu O, Jensen P, Campbell J, Givskov M, Ohman DE, Hoiby N, Molin S, Kharazmi A (1999) Mucoid conversion of Pseudomonas aeruginosa by hydrogen peroxide: a mechanism for virulence activation in the cystic fibrosis lung. Microbiology 145:1349–1357PubMedGoogle Scholar
  37. May TB, Shinabarger D, Boyd A, Chakrabarty AM (1994) Identification of amino acid residues involved in the activity of phosphomannose isomerase-guanosine 5′-diphospho-d-mannose pyrophosphorylase. A bifunctional enzyme in the alginate biosynthetic pathway of Pseudomonas aeruginosa. J Biol Chem 269(7):4872–4877PubMedGoogle Scholar
  38. Mirshafiey A, Matsuo H, Nakane S, Rehm BHA, Koh CS, Miyoshi S (2005) Novel immunosuppressive therapy by M2000 in experimental multiple sclerosis. Immunopharmacol Immunotoxicol 27(2):255–265PubMedCrossRefGoogle Scholar
  39. Monday SR, Schiller NL (1996) Alginate synthesis in Pseudomonas aeruginosa: the role of AlgL (alginate lyase) and AlgX. J Bacteriol 178(3):625–632PubMedGoogle Scholar
  40. Moreno S, Najera R, Guzman J, Soberon-Chavez G, Espin G (1998) Role of alternative sigma factor algU in encystment of Azotobacter vinelandii. J Bacteriol 180(10):2766–2769PubMedGoogle Scholar
  41. Narbad A, Russell NJ, Gacesa P (1988) Radiolabelling patterns in alginate of Pseudomonas aeruginosa synthesized from specifically-labelled 14C-monosaccharide precursors. Microbios 54(220–221):171–179PubMedGoogle Scholar
  42. Nivens DE, Ohman DE, Williams J, Franklin MJ (2001) Role of alginate and its O acetylation in formation of Pseudomonas aeruginosa microcolonies and biofilms. J Bacteriol 183(3):1047–1057PubMedCrossRefGoogle Scholar
  43. Nyvall P, Corre E, Boisset C, Barbeyron T, Rousvoal S, Scornet D, Kloareg B, Boyen C (2003) Characterization of mannuronan C-5-epimerase genes from the brown alga Laminaria digitata. Plant Physiol 133(2):726–735PubMedCrossRefGoogle Scholar
  44. Olvera C, Goldberg JB, Sanchez R, Soberon-Chavez G (1999) The Pseudomonas aeruginosa algC gene product participates in rhamnolipid biosynthesis. FEMS Microbiol Lett 179(1):85–90PubMedCrossRefGoogle Scholar
  45. Pandey R, Khuller GK (2004) Chemotherapeutic potential of alginate-chitosan microspheres as anti-tubercular drug carriers. J Antimicrob Chemother 53(4):635–640PubMedCrossRefGoogle Scholar
  46. Rehm BHA (1996) The Azotobacter vinelandii gene algJ encodes an outer membrane protein presumably involved in export of alginate. Microbiology 142:873–880PubMedGoogle Scholar
  47. Rehm BHA (2005) Biosynthesis and applications of alginates. In: Francis T (ed) Encyclopedia of biomaterials and biomedical engineering, vol 1, pp 1–9Google Scholar
  48. Rehm BHA, Valla S (1997) Bacterial alginates: biosynthesis and applications. Appl Microbiol Biotechnol 48(3):281–288PubMedCrossRefGoogle Scholar
  49. Rehm BHA, Boheim G, Tommassen J, Winkler UK (1994a) Overexpression of algE in Escherichia coli: subcellular localization, purification, and ion channel properties. J Bacteriol 176:5639–5647Google Scholar
  50. Rehm BHA, Ertesvåg H, Valla S (1996) A new Azotobacter vinelandii mannuronan C-5-epimerase gene (algG) is part of an alg gene cluster physically organized in a manner similar to that in Pseudomonas aeruginosa. J Bacteriol 178(20):5884–5889PubMedGoogle Scholar
  51. Rehm BHA, Grabert E, Hein J, Winkler UK (1994b) Antibody response of rabbits and cystic fibrosis patients to an alginate-specific outer membrane protein of a mucoid strain of Pseudomonas aeruginosa. Microb Pathog 16(1):43–51CrossRefGoogle Scholar
  52. Remminghorst U, Rehm BHA (2006a) Alg44, a unique protein required for alginate biosynthesis in Pseudomonas aeruginosa. FEBS Lett (in press)Google Scholar
  53. Remminghorst U, Rehm BHA (2006b) In vitro alginate polymerization and the functional role of Alg8 in alginate production by Pseudomonas aeruginosa. Appl Environ Microbiol 72(1):298–305CrossRefGoogle Scholar
  54. Richard A, Margaritis A (2004) Empirical modeling of batch fermentation kinetics for poly(glutamic acid) production and other microbial biopolymers. Biotechnol Bioeng 87(4):501–515PubMedCrossRefGoogle Scholar
  55. Robles-Price A, Wong TY, Sletta H, Valla S, Schiller NL (2004) AlgX is a periplasmic protein required for alginate biosynthesis in Pseudomonas aeruginosa. J Bacteriol 186(21):7369–7377PubMedCrossRefGoogle Scholar
  56. Rokstad AM, Kulseng B, Strand BL, Skjåk-Bræk G, Espevik T (2001) Transplantation of alginate microcapsules with proliferating cells in mice: capsular overgrowth and survival of encapsulated cells of mice and human origin. Ann NY Acad Sci 944: 216–225PubMedCrossRefGoogle Scholar
  57. Römling U, Amikam D (2006) Cyclic di-GMP as a second messenger. Curr Opin Microbiol 9(2):218–228PubMedCrossRefGoogle Scholar
  58. Salzig M, Rehm BHA (2006) Microbial production of alginates: self assembly and applications. In: Rehm BHA (ed) Microbial bionanotechnology: biological self-assembly systems and biopolymer-based nanostructures. Horizon Bioscience, pp 125–152Google Scholar
  59. Saxena IM, Brown RM Jr (2000) Cellulose synthases and related enzymes. Curr Opin Plant Biol 3(6):523–531PubMedCrossRefGoogle Scholar
  60. Saxena IM, Brown RM Jr, Dandekar T (2001) Structure–function characterization of cellulose synthase: relationship to other glycosyltransferases. Phytochemistry 57(7):1135–1148PubMedCrossRefGoogle Scholar
  61. Saxena IM, Brown RM Jr, Fevre M, Geremia RA, Henrissat B (1995) Multidomain architecture of beta-glycosyl transferases: implications for mechanism of action. J Bacteriol 177(6):1419–1424PubMedGoogle Scholar
  62. Schiller NL, Monday SR, Boyd CM, Keen NT, Ohman DE (1993) Characterization of the Pseudomonas aeruginosa alginate lyase gene (algL): cloning, sequencing, and expression in Escherichia coli. J Bacteriol 175(15):4780–4789PubMedGoogle Scholar
  63. Schmitt-Andrieu L, Hulen C (1996) Alginates of Pseudomonas aeruginosa: a complex regulation of the pathway of biosynthesis. C R Acad Sci III 319(3): 153–160PubMedGoogle Scholar
  64. Shankar S, Ye RW, Schlictman D, Chakrabarty AM (1995) Exopolysaccharide alginate synthesis in Pseudomonas aeruginosa: enzymology and regulation of gene expression. Adv Enzymol Relat Areas Mol Biol 70:221–255PubMedGoogle Scholar
  65. Shinabarger D, May TB, Boyd A, Ghosh M, Chakrabarty AM (1993) Nucleotide sequence and expression of the Pseudomonas aeruginosa algF gene controlling acetylation of alginate. Mol Microbiol 9(5):1027–1035PubMedGoogle Scholar
  66. Tatnell PJ, Russell NJ, Gacesa P (1994) GDP-mannose dehydrogenase is the key regulatory enzyme in alginate biosynthesis in Pseudomonas aeruginosa: evidence from metabolite studies. Microbiology 140(Pt 7):1745–1754PubMedCrossRefGoogle Scholar
  67. Thomas S (2000) Alginate dressings in surgery and wound management – Part 1. J Wound Care 9(2):56–60PubMedGoogle Scholar
  68. Trujillo-Roldan MA, Moreno S, Espin G, Galindo E (2004) The roles of oxygen and alginate-lyase in determining the molecular weight of alginate produced by Azotobacter vinelandii. Appl Microbiol Biotechnol 63(6):742–747PubMedCrossRefGoogle Scholar
  69. Trujillo-Roldan MA, Moreno S, Segura D, Galindo E, Espin G (2003) Alginate production by an Azotobacter vinelandii mutant unable to produce alginate lyase. Appl Microbiol Biotechnol 60(6):733–737PubMedGoogle Scholar
  70. Valla S, Li J, Ertesvåg H, Barbeyron T, Lindahl U (2001) Hexuronyl C5-epimerases in alginate and glycosaminoglycan biosynthesis. Biochimie 83(8):819–830PubMedCrossRefGoogle Scholar
  71. Vazquez A, Moreno S, Guzman J, Alvarado A, Espin G (1999) Transcriptional organization of the Azotobacter vinelandii algGXLVIFA genes: characterization of algF mutants. Gene 232(2):217–222PubMedCrossRefGoogle Scholar
  72. Wood LF, Ohman DE (2006) Independent regulation of MucD, an HtrA-like protease in Pseudomonas aeruginosa, and the role of its proteolytic motif in alginate gene regulation. J Bacteriol 188(8):3134–3137PubMedCrossRefGoogle Scholar
  73. Wu W, Badrane H, Arora S, Baker HV, Jin S (2004) MucA-mediated coordination of type III secretion and alginate synthesis in Pseudomonas aeruginosa. J Bacteriol 186(22):7575–7585PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2006

Authors and Affiliations

  1. 1.Institute of Molecular BioSciencesMassey UniversityPalmerston NorthNew Zealand

Personalised recommendations