Biotechnology Letters

, Volume 28, Issue 19, pp 1515–1525

Immobilized yeast cell systems for continuous fermentation applications

  • Pieter J. Verbelen
  • David P. De Schutter
  • Filip Delvaux
  • Kevin J. Verstrepen
  • Freddy R. Delvaux
Review
  • 2.2k Downloads

Abstract

In several yeast-related industries, continuous fermentation systems offer important economical advantages in comparison with traditional systems. Fermentation rates are significantly improved, especially when continuous fermentation is combined with cell immobilization techniques to increase the yeast concentration in the fermentor. Hence the technique holds a great promise for the efficient production of fermented beverages, such as beer, wine and cider as well as bio-ethanol. However, there are some important pitfalls, and few industrial-scale continuous systems have been implemented. Here, we first review the various cell immobilization techniques and reactor setups. Then, the impact of immobilization on cell physiology and fermentation performance is discussed. In a last part, we focus on the practical use of continuous fermentation and cell immobilization systems for beer production.

Keywords

Beer production Fermentation technology Flocculation Saccharomyces cerevisiae Yeast physiology 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bardi EP, Koutinas AA, Kanellaki M (1997) Room and low temperature brewing with yeast immobilized on gluten pellets. Proc Biochem 32:691–696CrossRefGoogle Scholar
  2. Baron GV, Willaert RG (2004) Cell immobilization in preformed porous matrices. In: Nedovic V, Willaert R (eds) Fundamentals of cell immobilisation biotechnology. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 229–244Google Scholar
  3. Baron GV, Willaert RG, De Backer L (1996) Immobilised cell reactors. In: Willaert RG, Baron GV, De Backer L (eds) Immobilised living cell systems: modelling and experimental methods. John Wiley & Sons, Chichester, England, pp. 67–95Google Scholar
  4. Bony M, Thines-Sempoux D, Barre P, Blondin B (1997) Localization and cell surface anchoring of the Saccharomyces cerevisiae flocculation protein Flo1p. J Bacteriol 179:4929–4936Google Scholar
  5. Boulton C, Quain D (2001) Brewing yeast and fermentation. Blackwell Science Ltd, OxfordGoogle Scholar
  6. Brányik T, Vicente A, Cruz JMM, Teixeira JA (2004a) Continuous primary fermentation of beer with yeast immobilized on spent grains – the effect of operational conditions. J Am Soc Brew Chem 62:29–34Google Scholar
  7. Brányik T, Vicente A, Oliveira R, Teixeira JA (2004b) Physicochemical surface properties of brewing yeast influencing their immobilization onto spent grains in a continuous reactor. Biotechnol Bioeng 88:84–93CrossRefGoogle Scholar
  8. Coutts MW (1966) The many facets of continuous fermentation. In: Proceedings of the 9th Convention of the Institute of Brewing. Australië & New Zealand Section, Auckland, pp 1–7Google Scholar
  9. Decamps C, Norton S, Poncelet D, Neufeld RJ (2004) Continuous pilot plant-scale immobilization of yeast in (-carrageenan gel beads. AIChE J 50:1599–1605CrossRefGoogle Scholar
  10. Domingues L, Vicente AA, Lima N, Teixeira JA (2000) Applications of yeast flocculation in biotechnological processes. Biotechnol Bioprocess Eng 5:288–305CrossRefGoogle Scholar
  11. Doran PM, Bailey JE (1986) Effects of immobilization on growth, fermentation properties, and molecular composition of Saccharomyces cerevisiae attached to gelatin. Biotechnol Bioeng 28:73–87PubMedCrossRefGoogle Scholar
  12. Dunbar J, Campbell SI, Banks DJ, Warren DR (1988) Metabolic aspects of a commercial continuous fermentation system. In: Proceedings of the 20th Convention of the Institute of Brewing, 8th–13th May, Brisbane, pp 151–158Google Scholar
  13. Galazzo JL, Bailey JE (1990) Fermentation pathway kinetics and metabolic flux control in suspended and immobilized Saccharomyces cerevisiae. Enzyme Microb Technol 12:162–172CrossRefGoogle Scholar
  14. Higgins VJ, Beckhouse AG, Oliver AD, Rogers P, Dawes IW (2003) Yeast genome-wide expression analysis identifies a strong ergosterol and oxidative stress response during the initial stages of an industrial lager fermentation. Appl Environ Microbiol 69:4777–4787PubMedCrossRefGoogle Scholar
  15. Hilge-Rotmann B, Rehm H-J (1990) Relationship between fermentation capability and fatty acid composition of free and immobilized Saccharomyces cerevisiae. Appl Microbiol Biotechnol 34:502–508Google Scholar
  16. Inloes DS, Taylor DP, Cohen SN, Michaels AS, Robertson CR (1983) Ethanol production by Saccharomyces cerevisiae immobilized in hollow-fiber membrane bioreactors. Appl Environ Microbiol 46:264–278PubMedGoogle Scholar
  17. Inoue T (1995) Development of a two-stage immobilized yeast fermentation system for continuous beer brewing. In: Proceedings of the 25th European Brewery Convention. IRL Press, Oxford, Brussels, pp 25–36, ISBN  0-19-963614-1Google Scholar
  18. Jin Y-L, Speers AR (1998) Flocculation of Saccharomyces cerevisiae. Food Res Int 31:421–440CrossRefGoogle Scholar
  19. Jirku V, Masak J, Cejkova A (2000) Yeast cell attachment: a tool modulating wall composition and resistance to 5-bromo-6-azauracil. Enzyme Microb Technol 26:808–811CrossRefGoogle Scholar
  20. Jirku V, Masak J, Cejkova A (2003) The potential of functional changes in attached biomass. Adv Environ Res 7:635–639CrossRefGoogle Scholar
  21. Junter G-A, Coquet L, Vilain S, Jouenne T (2002) Immobilized-cell physiology: current data and the potentialities of proteomics. Enzyme Microb Technol 31:201–212CrossRefGoogle Scholar
  22. Karel SF, Libicki SB, Robertson CR (1985) The immobilization of whole cells: Engineering principles. Chem Eng Sci 40:1321–1354CrossRefGoogle Scholar
  23. Kargupta K, Datta S, Sanyal SK (1998) Analysis of the performance of a continuous membrane bioreactor with cell recycling during ethanol fermentation. Biochem Eng J 1:31–37CrossRefGoogle Scholar
  24. Kobayashi O, Hayashi N, Kuroki R, Sone H (1998) Region of Flo1 proteins responsible for sugar recognition. J Bacteriol 180:6503–6510PubMedGoogle Scholar
  25. Lebeau T, Jouenne T, Junter G-A (1998) Diffusion of sugars and alcohols through composite membrane structures immobilizing viable yeast cells. Enzyme Microb Technol 22:434–438CrossRefGoogle Scholar
  26. Linko M, Haikara A, Ritala A, Penttilä M (1998) Recent advances in the malting and brewing industry. J Biotechnol 65:85–98CrossRefGoogle Scholar
  27. Linko M, Virkajärvi I, Pohjala N, Lindborg K, Kronlöf J, Pajunen E (1997) Main fermentation with immobilized yeast – a breakthrough? In: Proceedings of the 26th European Brewery Convention. IRL Press, Oxford, Maastricht, pp 385–394. ISBN  0-19-963690-7Google Scholar
  28. Masschelein CA (1994) State-of-the-art and future developments in fermentation. J Am Soc Brew Chem 52:28–35Google Scholar
  29. Mensour N, Margaritis A, Briens CL, Pilkington H, Russell I (1997) New developments in the brewing industry using immobilised yeast cell bioreactor systems. J Inst Brew 103:363–370Google Scholar
  30. Mistler M, Breitenbücher K (1995) Continuous fermentation of beer with yeast immobilized on porous glass carriers. Brewers’ Digest July:48–51Google Scholar
  31. Mulder M (1996) Basic principles of membrane technology, 2nd edn. Kluwer Academic Publishers, Dordrecht, The NetherlandsGoogle Scholar
  32. Narziss L (1997) Global brewing technology – a look over the fence. Brauwelt Int 1:16–21Google Scholar
  33. Narziss L, Hellich P (1971) Ein Beitrag zur wesentlichen Beschleunigung der Gärung und Reifung des Bieres. Brauwelt 111:1491–1500Google Scholar
  34. Nedovic VA, Cukalovic IL, Bezbradica D, Obradovic B, Bugarski B (2005a) New porous matrices and procedures for yeast cell immobilisation for primary beer fermentation. In: Proceedings of the 30th European Brewery Convention. Prague, pp 401–413, ISBN  90-70143-23-2Google Scholar
  35. Nedovic VA, Willaert R, Leskosek-Cukalovic I, Obradovic B, Bugarski B (2005b) Beer production using immobilised cells. In: Nedovic V, Willaert R (eds) Applications of cell immobilisation biotechnology. Springer, Dordrecht, The Netherlands, pp 259–273CrossRefGoogle Scholar
  36. Nitzsche F, Höhn G, Meyer-Pittroff R, Berger S, Pommersheim R (2001) A new way for immobilized yeast systems: secondary fermentation without heat treatment. In: Proceedings of the 28th European Brewery Convention. Budapest, pp 486–494, ISBN 90-70143-21-6Google Scholar
  37. Norton S, D’Amore T (1994) Physiological effects of yeast immobilization: applications for brewing. Enzyme Microb Technol 16:365–375CrossRefGoogle Scholar
  38. Norton S, Watson K, D’Amore T (1995) Ethanol tolerance of immobilized brewer’s yeast cells. Appl Microbiol Biotechnol 43:18–24PubMedCrossRefGoogle Scholar
  39. Obradovic B, Nedovic VA, Bugarski B, Willaert RG, Vunjak-Novakovic G (2004) Immobilised cell bioreactors. In: Nedovic V, Willaert R (eds) Fundamentals of cell immobilisation biotechnology. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 411–436Google Scholar
  40. O’Brien DJ, Craig JCJ (1996) Ethanol production in a continuous fermentation/membrane pervaporation system. Appl Microbiol Biotechnol 44:699–704CrossRefGoogle Scholar
  41. O’Brien DJ, Roth LH, McAloon AJ (2000) Ethanol production by continuous fermentation–pervaporation: a preliminary economic analysis. J Membr Sci 166:105–111CrossRefGoogle Scholar
  42. Oliveira R (1997) Understanding adhesion: a means for preventing fouling. Exp Therm Fluid Sci 14:316–322CrossRefGoogle Scholar
  43. Ramakrishna SV, Prakasham RS (1999) Microbial fermentations with immobilized cells. Curr Sci 77:87–100Google Scholar
  44. Sampermans S, Mortier J, Soares EV (2005) Flocculation onset in Saccharomyces cerevisiae: the role of nutrients. J Appl Microbiol 98:525–531PubMedCrossRefGoogle Scholar
  45. Scott JA, O’Reilly AM (1995) Use of a flexible sponge matrix to immobilize yeast for beer fermentation. J Am Soc Brew Chem 53:67–71Google Scholar
  46. Shen H-Y, De Schrijver S, Moonjai N, Verstrepen KJ, Delvaux F, Delvaux FR (2004) Effects of CO2 on the formation of flavour volatiles during fermentation with immobilised brewer’s yeast. Appl Microbiol Biotechnol 64:636–643PubMedCrossRefGoogle Scholar
  47. Shen H-Y, Moonjai N, Verstrepen KJ, Delvaux F, Delvaux FR (2003a) Immobilization of Saccharomyces cerevisiae induces changes in the gene expression levels of HSP12, SSA3 and ATF1 during beer fermentation. J Am Soc Brew Chem 61:175–181Google Scholar
  48. Shen H-Y, Moonjai N, Verstrepen KJ, Delvaux FR (2003b) Impact of attachment immobilization on yeast physiology and fermentation performance. J Am Soc Brew Chem 61:79–87Google Scholar
  49. Smogrovicová D, Dömény Z (1999) Beer volatile by-product formation at different fermentation temperature using immobilised yeasts. Process Biochem 34:785–794CrossRefGoogle Scholar
  50. Smogrovicová D, Dömény Z, Navrátil M, Dvorák P (2001) Continuous beer fermentation using polyvinyl alcohol entrapped yeast. In: Proceedings of the 28th European Brewery Convention. Budapest, pp 540–548, ISBN 90-70143-21-6Google Scholar
  51. Stoughton RB (2005) Applications of DNA microarrays in biology. Annu Rev Biochem 74:53–82PubMedCrossRefGoogle Scholar
  52. Tapani K, Soininen-Tengvall P, Berg H, Ranta B, Pajunen E (2003) Continuous primary fermentation of beer with immobilised yeast. In: Smart KA (ed) Brewing yeast fermentation performance, 2nd edn. Blackwell Science, Oxford, pp 293–301Google Scholar
  53. Tata M, Bower P, Bromberg S, Duncombe D, Fehring J, Lau V, Ryder D, Stassi P (1999) Immobilized yeast bioreactor systems for continuous beer fermentation. Biotechnol Prog 15:105–113PubMedCrossRefGoogle Scholar
  54. van Dieren B (1995) Yeast metabolism and the production of alcohol-free beer. In: EBC Symposium “Immobilized Yeast Applications in the Brewery Industry”, Monograph XXIV, Oct 1995, Espoo, Finland: Verlag Hans Carl Getränke-Fachverlag, pp 66–76, ISBN 3-418-00749-XGoogle Scholar
  55. van Iersel MFM, Meersman E, Arntz M, Rombouts FM, Abee T (1998) Effect of environmental conditions on flocculation and immobilization of brewer’s yeast during production of alcohol-free beer. J Inst Brew 104:131–136Google Scholar
  56. van Iersel MFM, van Dieren B, Rombouts FM, Abee T (1999) Flavor formation and cell physiology during the production of alcohol-free beer with immobilized Saccharomyces cerevisiae. Enzyme Microb Technol 24:407–411CrossRefGoogle Scholar
  57. Verstrepen KJ, Derdelinckx G, Verachtert H, Delvaux FR (2003) Yeast flocculation: what brewers should know. Appl Microbiol Biotechnol 61:197–205PubMedGoogle Scholar
  58. Verstrepen KJ, Iserentant D, Malcorps P, Derdelinckx G, Van Dijck P, Winderickx J, Pretorius IS, Thevelein JM, Delvaux FR (2004) Glucose and sucrose: hazardous fast-food for industrial yeast? Trends Biotechnol 22:531–537PubMedCrossRefGoogle Scholar
  59. Verstrepen KJ, Klis FM (2006) Flocculation, adhesion and biofilm formation in yeasts. Mol Microbiol 60:5–15PubMedCrossRefGoogle Scholar
  60. Verstrepen KJ, Pretorius IS (2006) The development of superior yeast strains for the food and beverage industry: challenges, opportunities and potential benefits. In: Querol A, Fleet G (eds) The yeast handbook, volume 8: yeasts in food and beverages. Springer-Verlag, Heidelberg, Germany, pp 399–444CrossRefGoogle Scholar
  61. Virkajärvi I (2001) Feasibility of continuous main fermentation of beer using immobilized yeast. PhD thesis, Helsinki University of Technology, EspooGoogle Scholar
  62. Virkajärvi I (2002) Some developments in immobilized fermentation of beer during the last 3 0 years. Brauwelt Int 20:100–105Google Scholar
  63. Virkajärvi I, Lindborg K, Kronlöf J, Pajunen E (1999) Effects of aeration on flavor compounds in immobilized primary fermentation. Mon Schr Brauwiss 52:9–12, 25–28Google Scholar
  64. Wainwright T (1973) Diacetyl – a review. J Inst Brew 79:451–470Google Scholar
  65. Willaert RG (2006) Cell immobilisation and its applications in biotechnology: current trends and future prospects. In: El-Mansi EMT, Bryce CFA (eds) Fermentation microbiology and biotechnology, 2nd edn. Taylor and Francis (in press)Google Scholar
  66. Willaert RG, De Backer L, Baron GV (1996) Mass transfer in immobilised cell systems. In: Willaert RG, Baron GV, De Backer L (eds) Immobilised living cell systems: modelling and experimental methods. John Wiley & Sons, Chichester, England, pp 21–45Google Scholar
  67. Xu TJ, Zhao XQ, Bai FW (2005) Continuous ethanol production using self-flocculating yeast in a cascade of fermentors. Enzyme Microb Technol 37:634–640CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2006

Authors and Affiliations

  • Pieter J. Verbelen
    • 1
  • David P. De Schutter
    • 1
  • Filip Delvaux
    • 1
  • Kevin J. Verstrepen
    • 2
  • Freddy R. Delvaux
    • 1
  1. 1.Centre for Malting and Brewing Science, Faculty of Bioscience EngineeringKatholieke Universiteit LeuvenHeverleeBelgium
  2. 2.Bauer Center for Genomics Research, Room 104Harvard UniversityCambridgeUSA

Personalised recommendations