Biotechnology Letters

, Volume 28, Issue 15, pp 1187–1192 | Cite as

Enhancement of Polyunsaturated Fatty Acid Production by Tn5 Transposon in Shewanella baltica

  • Mitra Amiri-Jami
  • Haifeng Wang
  • Yukio Kakuda
  • Mansel W. Griffiths
Original paper

Abstract

Transposon Tn5 mutagenesis was used to generate random mutations in Shewanella baltica MAC1, a polyunsaturated fatty acid (PUFA)-producing bacterium. Three mutants produced 3–5 times more eicosapentaenoic acid (EPA 20:5 n−3) compared to the wild type at 10°C. One of the mutants produced 0.3 mg EPA g−1 when grown at high temperature (30°C). Moreover, 2 mg docosahexaenoic acid (DHA 22:6 n−3) g−1 was produced by S. baltica mutants at 4°C. Sequencing of insertion mutation(s) showed 96% homology to trimethylamine N-oxide (TMAO) reductase gene and 85% homology to rRNA operons of E. coli. Tn5 transposon mutagenesis therefore is a suitable technique to increase PUFA formation in bacteria.

Keywords

Docosahexaenoic acid Eicosapentaenoic acid Shewanella Transposon mutagenesis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bordi C, Lobbi-Nivol C, Mejean V, Patte JC (2003) Effects of ISSo2 insertions in structural and regulatory genes of trimethylamine oxide reductase of Shewanella oneidensis. J Bacteriol 185(6):2042–2045PubMedCrossRefGoogle Scholar
  2. Cadieux SU, Kakuda Y, Ward OP, Griffiths MW (1998) Bacterial production of ω3 fatty acids in whey. Milchwissenschaft 53:547–551Google Scholar
  3. Carpentier W, De Smet L, Van Beeumen J, Brige A (2005) Respiration and growth of Shewanella oneidensis MR-1 using vanadate as the sole electron acceptor. J Bacteriol 187:3293–3301PubMedCrossRefGoogle Scholar
  4. De Lorenzo V, Herrero M, Jakubzik U, Timmis KN (1990) Mini-Tn5 transposon derivatives for insertion mutagenesis promoter probing and chromosomal insertion of cloned DNA in Gram-negative eubacteria. J Bacteriol 172(11):6568–6572PubMedGoogle Scholar
  5. Fontani G, Corradeschi F, Felici A, Alfatti F, Migliorini S, Lodi L (2005) Cognitive and physiological effects of Omega-3 polyunsaturated fatty acid supplementation in healthy subjects. Eur J Clin Invest 35:691–699PubMedCrossRefGoogle Scholar
  6. Hall JM, Parrish CC, Thompson RJ (2002) Eicosapentaenoic acid regulates scallop (Plactopecten magellanicus) membrane fluidity in response to cold. Biol Bull 202:201–203PubMedCrossRefGoogle Scholar
  7. Karlyshev AV, Pallen MJ, Wren BW (2000) Single Primer PCR procedure for rapid identification of transposon insertion sites. BioTechniques 28:1078–1082PubMedGoogle Scholar
  8. Lewenza S, Falsafi RK, Winsor G, Gooderham WJ, McPhee JB, Brinkman FS, Hancock RE (2005) Construction of a mini-Tn5-luxCDABE mutant library in Pseudomonas aeruginosa PAO1: a tool for identifying differentially regulated genes. Genome Res 15:583–589PubMedCrossRefGoogle Scholar
  9. Llamas I, Argandona M, Quesada E, del Moral A (2000) Transposon mutagenesis in Halomonas eurihalina. Res Microbiol 151:13–18PubMedCrossRefGoogle Scholar
  10. MacLean CH, Newberry SJ, Mojica WA, Khanna P, Issa AM, Suttorp MJ, Lim YW, Traina SB, Hilton L, Garland R, Morton SC (2006) Effects of omega-3 fatty acids on cancer risk: a systematic review. J Am Med Assoc 295:403–415CrossRefGoogle Scholar
  11. McCrindle SL, Kappler U, McEwan AG (2005) Microbial dimethylsulfoxide and trimethylamine- N-oxide respiration. Adv Microb Physiol 50:147–198PubMedCrossRefGoogle Scholar
  12. Morita N, Nishida T, Tanaka M, Yano Y, Okuyama H (2005) Enhancement of polyunsaturated fatty acid production by cerulenin treatment in polyunsaturated fatty acid-producing bacteria. Biotechnol Lett 27:389–393PubMedCrossRefGoogle Scholar
  13. Ratledge C (2004) Fatty acid biosynthesis in microorganisms being used for single cell oil production. Biochimie 86:807–815PubMedCrossRefGoogle Scholar
  14. Russell NJ, Nichols DS (1999) Polyunsaturated fatty acids in marine bacteria, a dogma rewritten. Microbiology 145:767–779PubMedCrossRefGoogle Scholar
  15. Satomi M, Oikawa H, Yano Y (2003) Shewanella marinintestina sp. nov., Shewanella chlegeliana sp. nov. and Shewanella sairae sp. nov., novel eicosapentaenoic-acid-producing marine bacteria isolated from sea-animal intestines. Int J System Evol Microbiol 53:491–499CrossRefGoogle Scholar
  16. Siddiqui RA, Shaikh SR, Sech LA, Yount HR, Stillwell W, Zaloga GP (2004) Omega 3-fatty acids: health benefits and cellular mechanisms of action. Mini Rev Med Chem 4:859–871PubMedGoogle Scholar
  17. Valentine RC, Valentine DL (2004) Omega-3 fatty acids in cellular membranes: a unified concept. Prog Lipid Res 43:383–402PubMedCrossRefGoogle Scholar
  18. Watanabe K, Ishikawa C, Yazawa K, Kondo K, Kawaguchi A (1996) Fatty acid and lipid omposition of an eicosapentaenoic acid-producing marine bacterium. J␣Mar Biotechnol 4:104–112Google Scholar
  19. Winson MK, Swift S, Hill PJ, Sims CM, Griesmayr G, Bycroft BW, Williams P, Stewart GS (1998) Engineering the luxCDABE genes from Photorhabdus luminescens to provide a bioluminescent reporter for constitutive and promoter probe plasmids and mini-Tn5 constructs. FEMS Microbiol Lett 163:193–202PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2006

Authors and Affiliations

  • Mitra Amiri-Jami
    • 1
  • Haifeng Wang
    • 1
    • 2
  • Yukio Kakuda
    • 1
  • Mansel W. Griffiths
    • 1
    • 2
  1. 1.Department of Food ScienceUniversity of GuelphGuelphCanada
  2. 2.Canadian Research Institute for Food SafetyUniversity of GuelphGuelphCanada

Personalised recommendations