Biotechnology Letters

, Volume 28, Issue 9, pp 607–616 | Cite as

Growing Phototrophic Cells without Light

  • Guan-Qun Chen
  • Feng Chen


Many phototrophic microorganisms contain large quantities of high-value products such as n-3 polyunsaturated fatty acids and carotenoids but phototrophic growth is often slow due to light limitation. Some phototrophic microorganisms can also grow on cheap organic substrate heterotrophically. Heterotrophic cultivation can be well controlled and provides the possibility to achieve fast growth and high yield of valuable products on a large scale. Several strategies have been investigated for cultivation of phototrophic microorganisms without light. These include trophic conversion of obligate photoautotrophic microorganisms by genetic engineering, development of efficient cultivation systems and optimization of culture conditions. This paper reviews recent advances in heterotrophic cultivation of phototrophic cells with an emphasis on microalgae.


growth heterotrophic microalgae phototrophic 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Apt, KE, Behrens, PW 1999Commercial developments in microalgal biotechnologyJ. Phycol.35215226CrossRefGoogle Scholar
  2. Barclay, WR, Meager, KM, Abril, JR 1994Heterotrophic production of long-chain omega-3 fatty acids utilizing algae and algae-like microorganismsJ. Appl. Phycol.6123129CrossRefGoogle Scholar
  3. Beauclerk, AAD, Smith, AJ 1978Transport of d-glucose and 3-O-methyl-d-glucose in cyanobacteria Aphanocapsa 6714 and Nostoc strain MACEur. J. Biochem.82187197CrossRefPubMedGoogle Scholar
  4. Benedict, CR 1978Nature of obligate photoautotrophyAnnu. Rev. Plant Physiol. Plant Molec. Biol.296793CrossRefGoogle Scholar
  5. Borowitzka, MA 1997Microalgae for aquaculture: opportunities and constraintsJ. Appl. Phycol.9393401CrossRefGoogle Scholar
  6. Borowitzka, MA 1999Commercial production of microalgae: ponds, tanks, tubes and fermentersJ. Biotechnol.70313321CrossRefGoogle Scholar
  7. Brinda, BR, Sarada, R, Kamath, BS, Ravishankar, GA 2004Accumulation of astaxanthin in flagellated cells of Haematococcus pluvialis – cultural and regulatory aspectsCurr. Sci.8712901295Google Scholar
  8. Britton, G 1995Structure and properties of carotenoids in relation to functionFASEB J.915511558PubMedGoogle Scholar
  9. Chen, F 1996High cell density culture of microalgae in heterotrophic growthTrends Biotechnol.14421426CrossRefGoogle Scholar
  10. Chen, F, Johns, MR 1991Effect of C/N ratio and aeration on the fatty acid composition of heterotrophic Chlorella sorokiniana J. Appl. Phycol.3203209Google Scholar
  11. Chen, F, Johns, MR 1996Heterotrophic growth of Chlamydomonas reinhardtii on acetate in chemostat cultureProc. Biochem.31601604CrossRefGoogle Scholar
  12. Choi, YE, Yun, YS, Park, JM 2002Evaluation of factors promoting astaxanthin production by a unicellular green alga, Haematococcus pluvialis, with fractional factorial designBiotechnol. Prog.1811701175PubMedCrossRefGoogle Scholar
  13. Cohen Z, Ratledge C (2005) (eds): Single Cell Oils, Champaign, IL, AOCS PressGoogle Scholar
  14. Swaaf, ME, Rijk, TC, Eggink, G, Sijtsma, L 1999Optimisation of docosahexaenoic acid production in batch cultivations by Crypthecodinium cohnii J. Biotechnol.70185192CrossRefGoogle Scholar
  15. Swaaf, ME, Pronk, JT, Sijtsma, L 2003aFed-batch cultivation of the docosahexaenoic-acid-producing marine alga Crypthecodinium cohnii on ethanolAppl. Microbiol. Biotechnol.614043Google Scholar
  16. Swaaf, ME, Sijtsma, L, Pronk, JT 2003bHigh-cell-density fed-batch cultivation of the docosahexaenoic acid producing marine alga Crypthecodinium cohnii Biotechnol. Bioeng.81666672CrossRefGoogle Scholar
  17. Fan, KW, Chen, F, Jones, EBG, Vrijmoed, LLP 2001Eicosapentaenoic and docosahexaenoic acids production by and okara-utilizing potential of thraustochytrids J. Ind. Microbiol. Biotechnol.27199202PubMedCrossRefGoogle Scholar
  18. Fischer, H, Robl, I, Sumper, M, Kroger, N 1999Targeting and covalent modification of cell wall and membrane proteins heterologously expressed in the diatom Cylindrotheca fusiformis (Bacillariophyceae)J. Phycol.35113120CrossRefGoogle Scholar
  19. Guerin, M, Huntley, ME, Olaizola, M 2003Haematococcus astaxanthin: applications for human health and nutritionTrends Biotechnol.21210216CrossRefPubMedGoogle Scholar
  20. Hallmann, A, Sumper, M 1996The Chlorella hexose/H+ symporter is a useful selectable marker and biochemical reagent when expressed in Volvox Proc. Natl. Acad. Sci. USA93669673CrossRefPubMedGoogle Scholar
  21. Harel, M, Koven, W, Lein, I, Bar, Y, Behrens, P, Stubblefield, J, Zohar, Y, Place, AR 2002Advanced DHA, EPA and ArA enrichment materials for marine aquaculture using single cell heterotrophsAquaculture213347362CrossRefGoogle Scholar
  22. Ip, PF, Chen, F 2005aProduction of astaxanthin by the green microalga Chlorella zofingiensis in the darkProc. Biochem.40733738CrossRefGoogle Scholar
  23. Ip, PF, Chen, F 2005bEmployment of reactive oxygen species to enhance astaxanthin formation in Chlorella zofingiensis in heterotrophic cultureProc. Biochem.4034913496CrossRefGoogle Scholar
  24. Ip, PF, Chen, F 2005cPeroxynitrite and nitryl chloride enhance astaxanthin production by the green microalga Chlorella zofingiensis in heterotrophic cultureProc. Biochem.4035953599CrossRefGoogle Scholar
  25. Jiang, Y, Chen, F 1999Effects of salinity on cell growth and docosahexaenoic acid content of the heterotrophic marine microalga Crypthecodinium cohnii J. Ind. Microbiol. Biotechnol.23508513CrossRefGoogle Scholar
  26. Jiang, Y, Chen, F 2000aEffects of temperature and temperature shift on docosahexaenoic acid production by the marine microalga Crypthecodinium cohnii J. Am. Oil Chem. Soc.77613617Google Scholar
  27. Jiang, Y, Chen, F 2000bEffects of medium glucose concentration and pH on docosahexaenoic acid content of heterotrophic Crypthecodinium cohnii Process Biochem.3512051209CrossRefGoogle Scholar
  28. Jiang, Y, Fan, KW, Wong, RDY, Chen, F 2004Fatty acid composition and squalene content of the marine microalga Schizochytrium mangrovei J. Agric. Food Chem.5211961200PubMedGoogle Scholar
  29. Johnson, EJ 2004A biological role of luteinFood Rev. Int.20116CrossRefGoogle Scholar
  30. Kobayashi, M, Kurimura, Y, Tsuji, Y 1997Light-independent, astaxanthin production by the green microalga Haematococcus pluvialis under salt stressBiotechnol. Lett.19507509CrossRefGoogle Scholar
  31. Kris-Etherton, PM, Hecker, KD, Binkoski, AE 2004Polyunsaturated fatty acids and cardiovascular healthNutr. Rev.62414426CrossRefPubMedGoogle Scholar
  32. Lawlor, DW 2001Photosynthesis3BIOS Scientific Publishers LtdOxfordGoogle Scholar
  33. Lee, YK 1997Commercial production of microalgae in the Asia-Pacific rimJ. Appl. Phycol.9403411CrossRefGoogle Scholar
  34. Lee, YK 2001Microalgal mass culture systems and methods: their limitation and potentialJ. Appl. Phycol.13307315CrossRefGoogle Scholar
  35. Lewin, RA 1962Physiology and Biochemistry of Algae1Academic PressNew YorkGoogle Scholar
  36. Liu, BH, Lee, YK 2000Secondary carotenoids formation by the green alga Chlorococcum spJ. Appl. Phycol.12301307CrossRefGoogle Scholar
  37. Ma, RYM, Chen, F 2001Induction of astaxanthin formation by reactive oxygen species in mixotrophic culture of Chlorococcum spBiotechnol. Lett.23519523CrossRefGoogle Scholar
  38. Nishino, H, Murakoshi, M, Ii, T, Takemura, M, Kuchide, M, Kanazawa, M, Mou, XY, Wada, S, Masuda, M, Ohsaka, Y, Yogosawa, S, Satomi, Y, Jinno, K 2002Carotenoids in cancer chemopreventionCancer Metast. Rev.21257264CrossRefGoogle Scholar
  39. Olaizola, M 2003Commercial development of microalgal biotechnology: from the test tube to the marketplaceBiomol. Eng.20459466PubMedCrossRefGoogle Scholar
  40. Raboy, B, Padan, E 1978Active transport of glucose and alpha-methylglucoside in cyanobacterium Plectonema boryanum J. Biol. Chem.25332873291PubMedGoogle Scholar
  41. Ratledge, C 2004Fatty acid biosynthesis in microorganisms being used for single cell oil productionBiochimie86807815CrossRefPubMedGoogle Scholar
  42. Ratledge, C, Kanagachandran, K, Anderson, AJ, Grantham, DJ, Stephenson, JC 2001Production of docosahexaenoic acid by Crypthecodinium cohnii grown in a pH-auxostat culture with acetic acid as principal carbon sourceLipids3612411246PubMedGoogle Scholar
  43. Ruxton, CHS, Reed, SC, Simpson, MJA, Millington, KJ 2004The health benefits of omega-3 polyunsaturated fatty acids: a review of the evidenceJ. Hum. Nutr. Diet.17449459CrossRefPubMedGoogle Scholar
  44. Ruxton, CHS, Calder, PC, Reed, SC, Simpson, MJA 2005The impact of long-chain n-3 polyunsaturated fatty acids on human healthNutr. Res. Rev.18113129CrossRefGoogle Scholar
  45. Schmidt, RA, Wiebe, MG, Eriksen, NT 2005Heterotrophic high cell-density fed-batch cultures of the phycocyanin-producing red alga Galdieria sulphuraria Biotechnol. Bioeng.907784CrossRefPubMedGoogle Scholar
  46. Shi, XM, Liu, HJ, Zhang, XW, Chen, F 1999Production of biomass and lutein by Chlorella protothecoides at various glucose concentrations in heterotrophic culturesProc. Biochem.34341347CrossRefGoogle Scholar
  47. Shi, XM, Zhang, XW, Chen, F 2000Heterotrophic production of biomass and lutein by Chlorella protothecoides on various nitrogen sourcesEnzyme Microb. Technol.27312318CrossRefPubMedGoogle Scholar
  48. Shi, XM, Jiang, Y, Chen, F 2002High-yield production of lutein by the green microalga Chlorella protothecoides in heterotrophic fed-batch cultureBiotechnol. Prog.18723727CrossRefPubMedGoogle Scholar
  49. Sies, H, Stahl, W 2004Carotenoids and UV protectionPhotochem. Photobiol. Sci.3749752CrossRefPubMedGoogle Scholar
  50. Sijtsma, L, Swaaf, ME 2004Biotechnological production and applications of the omega-3 polyunsaturated fatty acid docosahexaenoic acidAppl. Microbiol. Biotechnol.64146153CrossRefPubMedGoogle Scholar
  51. Stahl, W, Sies, H 2005Bioactivity and protective effects of natural carotenoidsBiochim. Biophys. Acta1740101107PubMedGoogle Scholar
  52. Stinson, EE, Kwoczak, R, Kurantz, MJ 1991Effect of cultural conditions on production of eicosapentaenoic acid by Pythium irregulare J. Ind. Microbiol.8171178PubMedCrossRefGoogle Scholar
  53. Tripathi, U, Sarada, R, Ravishankar, GA 2002Effect of culture conditions on growth of green alga Haematococcus pluvialis and astaxanthin productionActa Physiol. Plant.24323329Google Scholar
  54. Vogel, HC, Todaro, CL 1997Fermentation and Biochemical Engineering Handbook: Principles, Process Design, and Equipment2Noyes PublicationsWestwood, New JerseyGoogle Scholar
  55. Wen ZY (2001) A high yield and productivity strategy for eicosapentaenoic acid production by the diatom Nitzschia laevis in heterotrophic culture. PhD Thesis. Hong Kong: The University of Hong KongGoogle Scholar
  56. Wen, ZY, Chen, F 2000Heterotrophic production of eicosapentaenoid acid by the diatom Nitzschia laevis: effects of silicate and glucoseJ. Ind. Microbiol. Biotechnol.25218224CrossRefGoogle Scholar
  57. Wen, ZY, Chen, F 2001aOptimization of nitrogen sources for heterotrophic production of eicosapentaenoic acid by the diatom Nitzschia laevis Enzyme Microb. Technol.29341347CrossRefGoogle Scholar
  58. Wen, ZY, Chen, F 2001bApplication of statistically-based experimental designs for the optimization of eicosapentaenoic acid production by the diatom Nitzschia laevis Biotechnol. Bioeng.75159169CrossRefGoogle Scholar
  59. Wen, ZY, Chen, F 2002aPerfusion culture of the diatom Nitzschia laevis for ultra-high yield of eicosapentaenoic acidProc. Biochem.38523529CrossRefGoogle Scholar
  60. Wen, ZY, Chen, F 2002bContinuous cultivation of the diatom Nitzschia laevis for eicosapentaenoic acid production: physiological study and process optimizationBiotechnol. Prog.182128CrossRefGoogle Scholar
  61. Wen, ZY, Chen, F 2003Heterotrophic production of eicosapentaenoic acid by microalgaeBiotechnol. Adv.21273294CrossRefPubMedGoogle Scholar
  62. Wen, ZY, Jiang, Y, Chen, F 2002High cell density culture of the diatom Nitzschia laevis for eicosapentaenoic acid production: fed-batch developmentProc. Biochem.3714471453CrossRefGoogle Scholar
  63. Wood, AP, Aurikko, JP, Kelly, DP 2004A challenge for 21st century molecular biology and biochemistry: what are the causes of obligate autotrophy and methanotrophy?FEMS Microbiol. Rev.28335352CrossRefPubMedGoogle Scholar
  64. Yaguchi, T, Tanaka, S, Yokochi, T, Nakahara, T, Higashihara, T 1997Production of high yields of docosahexaenoic acid by Schizochytrium sp. strain SR21J. Am. Oil Chem. Soc.7414311434Google Scholar
  65. Yokochi, T, Honda, D, Higashihara, T, Nakahara, T 1998Optimization of docosahexaenoic acid production by Schizochytrium limacinum SR21Appl. Microbiol. Biotechnol.497276CrossRefGoogle Scholar
  66. Yongmanitchai, W, Ward, OP 1991Growth of and omega-3 fatty acid production by Phaeodactylum tricornutum under different culture conditionsAppl. Environ. Microbiol.57419425PubMedGoogle Scholar
  67. Zaslavskaia, LA, Lippmeier, JC, Shih, C, Ehrhardt, D, Grossman, AR, Apt, KE 2001Trophic conversion of an obligate photoautotrophic organism through metabolic engineeringScience29220732075CrossRefPubMedGoogle Scholar
  68. Zhang, CC, Jeanjean, R, Joset, F 1998Obligate phototrophy in cyanobacteria: more than a lack of sugar transportFEMS Microbiol. Lett.161285292PubMedGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  1. 1.Department of BotanyThe University of Hong KongHong KongChina

Personalised recommendations