Biotechnology Letters

, Volume 28, Issue 8, pp 567–570 | Cite as

Improvement of Interfacial Protein Stability by CHAPS

Article

Abstract

Emulsification of aqueous protein solutions in methylene chloride triggered the formation of water-insoluble aggregates at a water/methylene chloride interface. As a result, the amounts of β-lactoglobulin and ovalbumin recovered in water were 36 and 44%, respectively. Addition of 5 mm CHAPS in the aqueous phase raised the degree of β-lactoglobulin recovery to 96%. Sodium taurocholate, however, failed to improve protein recovery. The stabilizing effect of CHAPS was also protein-specific and concentration-dependent: at ≥5 mm, the surfactant caused unfolding of ovalbumin to make a water-soluble oligomer. CHAPS thus stabilizes proteins at an interface.

Keywords

CHAPS interface microspheres protein stability surfactants 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Banga, AK 1995

    Formulation of therapeutic peptides and proteins

    Banga, AK eds. Therapeutic Peptides and Proteins: Formulation, Processing and Delivery SystemsTechnomic PublishingPennsylvania81131
    Google Scholar
  2. Bordbar, AK, Omidiyan, K, Hosseinzadeh, R 2005Study on interaction of α-amylase from Bacillus subtilis with cetyltrimethylammonium bromideColloid Surface B406771CrossRefGoogle Scholar
  3. De, S, Girigoswami, A, Das, S 2005Fluorescence probing of albumin-surfactant interactionJ. Colloid Interf. Sci.285562573Google Scholar
  4. Dickinson, E 1999Adsorbed protein layers at fluid interfaces: interactions, structure and surface rheologyColloid Surface B15161176CrossRefGoogle Scholar
  5. Gelamo, EL, Silva, CHTP, Imasato, H, Tabak, M 2002Interaction of bovine and human serum albumins with ionic surfactants: spectroscopy and modelingBiochim. Biophys. Acta15948499PubMedGoogle Scholar
  6. Henriksson, M, Pramanik, A, Shafqat, J, Zhong, Z, Tally, M, Ekberg, K, Wahren, J, Rigler, R, Johansson, J, Jörnvall, H 2001Specific binding of proinsulin C-peptide to intact and to detergent-solubilized human skin fibroblastBiochem. Biophys. Res. Commun.280423427CrossRefPubMedGoogle Scholar
  7. Lee, SS, Kiserow, DJ, McGown, LB 1997Enzyme solubilization in a reversed micellar microreactor with a bile salt cosurfactantJ. Colloid Interf. Sci.1933240Google Scholar
  8. Perez-Rodriguez, C, Montano, N, Gonzalez, K, Griebenow, K 2003Stabilization of α-chymotrypsin at CH2Cl2/water interface and upon water-in-oil-in-water encapsulation in PLGA microspheresJ. Control. Release897185PubMedGoogle Scholar
  9. Sah, H 1999Protein behavior at the water/methylene chloride interfaceJ. Pharm. Sci.8813201325CrossRefPubMedGoogle Scholar
  10. Smith, PK, Krohn, RI, Hermanson, GT, Mallia, AK, Gartner, FH, Provenzano, MD, Fujimoto, EK, Goeke, NM, Olson, BJ, Klenk, DC 1985Measurement of protein using bicinchoninic acidAnal. Biochem.1507685CrossRefPubMedGoogle Scholar
  11. Vermer, AWP, Norde, W 2000The influence of the binding of low molecular weight surfactants on the thermal stability and secondary structure of IgGColloid Surface A161139150Google Scholar
  12. Wilde, PJ 2000Interfaces: their role in foam and emulsion behaviourCurr. Opin. Colloid Interf. Sci.5176181Google Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  1. 1.College of PharmacyEwha Womans UniversitySeodaemun-Gu, SeoulKorea

Personalised recommendations