Biotechnology Letters

, Volume 27, Issue 23–24, pp 1855–1859 | Cite as

Antisense-Mediated Inhibition of Acid Trehalase (ATH1) Gene Expression Promotes Ethanol Fermentation and Tolerance in Saccharomyces cerevisiae

Article

Abstract

Acid trehalase gene (ATH1) expression was decreased using the antisense-RNA technique in Saccharomyces cerevisiae. The 500 bp DNA fragments containing anti-ATH1 gene between +1 and +500 were amplified using PCR and fused to yeast ADH1, CYC1 and ATH1 promoters. Yeast cells harboring the recombinant plasmids had a low activity of acid trehalase and promoted ethanol fermentation compared to the control yeast cells harboring the vector plasmid only. The recombinant yeast had a high viability with 8% (v/v) ethanol.

Key words

acid trehalase anti-ATH1 ethanol fermentation ethanol stress S. cerevisiae 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alizadch, P, Klionsky, DJ 1996Purification and biochemical characterization of the ATH1 gene product, vacuolar acid trehalase, from Saccharomyces cerevisiaeFEMS Lett.391273378Google Scholar
  2. Destruelle, M, Holzer, H, Klionsky, DJ 1995Isolation and characterization of a novel yeast gene, ATH1, that is required for vacuolar acid trehalase activityYeast1110151025CrossRefPubMedGoogle Scholar
  3. Elbein, AD, Pan, YT, Pastuszak, I, Carroll, D 2003New insights on trehalose: a multifunctional moleculeGlycobiology131727CrossRefGoogle Scholar
  4. Estruch, F 2000Stress-controlled transcription factors, stress-induced genes and stress tolerance in budding yeastFEMS Microbiol. Rev.24469486CrossRefPubMedGoogle Scholar
  5. Hill, J, Lan, KA, Donald, G, Griffiths, DE 1991DMSO-enhanced whole cell yeast transformationNucl. Acids Res.1957915791PubMedGoogle Scholar
  6. Kaiser, C, Michaelis, S, Mitchell, A 1994Methods in Yeast GeneticsCold Spring Harbor Laboratory PressCold Spring Harbor, NYGoogle Scholar
  7. Kim, J, Alizadeh, P, Harding, T, Hefner-Gravink, A, Klionsky, DJ 1996Disruption of the yeast ath1 gene confers better survival after dehydration, freezing, and ethanol shock: potential commercial applicationsAppl. Environ. Microbiol.6215631569PubMedGoogle Scholar
  8. Kim, YH, Seu, JH 1988Culture condition for glucoamylase production and ethanol productivity of heterologous transformant of Saccharomyces cerevisiae gene of Saccharomyces diastaticus Korean J. Appl. Microbiol.16494498Google Scholar
  9. Kovari, L, Sumrada, R, Kovari, I, Cooper, TG 1990Multiple positive and negative cis-acting elements mediate induced arginase (CAR1) gene expression in Saccharomyces cerevisiaeMol. Cell Biol.1050875097PubMedGoogle Scholar
  10. Park, HD, Shin, MC, Woo, IS 2001Antisense-mediated inhibition of arginase (CARl) gene expression in Saccharomyces cerevisiaeJ. Biosci. Bioeng.92481484CrossRefPubMedGoogle Scholar
  11. Parrou, JL, Jules, M, Beltran, G, Francois, J 2005Acid trehalase in yeasts and filamentous fungi: localization, regulation and physiological functionFEMS Yeast Res.5503511PubMedGoogle Scholar
  12. Sambrook, J, Fritsch, EF, Maniatis, T 1989Molecular Cloning: A Laboratory Manual2Cold Spring Harbor Laboratory PressCold Spring Harbor, NYGoogle Scholar
  13. Singer, MA, Lindquist, S 1998Multiple effects of trehalose on protein folding in vitro and in vivoMol. Cell1639648CrossRefPubMedGoogle Scholar
  14. Wera, S, Schrijver, E, Geyskens, I, Nwaka, S, Thevelein, JM 1999Opposite roles of trehalase activity in heat-shock recovery and heat-shock survival in Saccharomyces cerevisiaeBiochem. J.343621626CrossRefPubMedGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  1. 1.Department of Life and Food SciencesKyungpook National UniversityDaeguKorea

Personalised recommendations