Biotechnology Letters

, Volume 27, Issue 8, pp 551–554 | Cite as

Synthesis of hydroquinone-α-glucoside by α-glucosidasefrom baker’s yeast

  • Radivoje M Prodanović
  • Nenad B Milosavić
  • Dušan Sladić
  • Tanja Ćirković Veličković
  • Zoran Vujčić
Article

Abstract

Hydroquinone-α-glucoside was synthesised from hydroquinone and maltose as glucosyl donor by transglucosylation in a water system with α-glucosidase from baker’s yeast. Only one phenolic –OH group was α-anomer-selectively glucosylated. The optimum conditions for transglucosylation reaction were at 30 °C for 20 h with 50 mM hydroquinone and 1.5 M maltose in 100 mM sodium citrate/phosphate buffer at pH 5.5. The glucoside was obtained at 0.6 mg/ml with a 4.6% molar yield with respect to hydroquinone.

Keywords

arbutin maltase phenolic compounds transglycosylation 

References

  1. Funayama, M, Arakawa, H, Yamamoto, R, Nishino, T, Shin, T, Murao, S 1995Effects of α- and β-arbutin on activity of tyrosinases from mushroom, and mouse melanomaBiosci. Biotech. Biochem.59143144Google Scholar
  2. Kitao, S, Sekine, H 1994α-D-Glucosyl transfer to phenolic compounds by sucrose phosphorylase from Leuconostoc mesenteroides and production of α-arbutinBiosci. Biotech. Biochem.583842Google Scholar
  3. Nakagawa, H, Yoshiyama, M, Shimura, S, Kirimura, K, Usami, S 1998Anomer-selective glucosylation of l-menthol by yeast α-glucosidaseBiosci. Biotechnol. Biochem.6213321336CrossRefPubMedGoogle Scholar
  4. Needleman, BR, Federoff, JH, Eccleshall, R, Buchferer, B, Marmur, J 1978Purification and characterization of an α-glucosidase from Saccharomyces carlsbergensisBiochemistry1746574661CrossRefPubMedGoogle Scholar
  5. Nishimura, T, Kometani, T, Takii, H, Terada, Y, Okada, S 1994Purification and some properties of α-amylase from Bacillus subtilis X-23 that glucosylates phenolic compounds such as hydroquinoneJ. Ferm. Bioeng.783136CrossRefGoogle Scholar
  6. Petit, MJ, Paquet, F, Beau, MJ 1991Syntheses of β-2-deoxy-D-glycosides assisted by glycosidasesTetrahedron Lett.3261256128CrossRefGoogle Scholar
  7. Prodanović, R, Jovanović, S, Vujčić, Z 2001Immobilization of invertase on a new type of macroporous glycidyl methacrylateBiotechnol. Lett.2311711174CrossRefGoogle Scholar
  8. Rodde, M, Franssen, M, Padt, A, Boom, R 2003Perspectives for the industrial enzymatic production of glycosidesBiotechnol. Prog.1913911402CrossRefPubMedGoogle Scholar
  9. Sato, T, Nakagawa, H, Kurosu, J, Yoshida, K, Tsugane, T, Shimura, S, Kirimura, K, Kino, K, Usami, S 2000α-Anomer-selective glucosylation of (+)-catechin by the crude enzyme, showing glucosyl transfer activity, of Xanthomonas campestris WU-9701J. Biosci. Bioeng90625630CrossRefGoogle Scholar
  10. Shin, KH, Kong, YJ, Lee, DJ, Lee, HT 2000Syntheses of hydroxybenzyl-α-glucosides by amyloglucosidase-catalyzed transglycosylationBiotechnol. Lett.22321325CrossRefGoogle Scholar
  11. Sladić, D, Gašić, M 1994Effects of iron(II) compounds on the amount of DNA damage in Friend erythroleukemia cells induced by avarol Role of hydroxyl radicalsJ Serb. Chem. Soc.59915920Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Radivoje M Prodanović
    • 1
  • Nenad B Milosavić
    • 2
  • Dušan Sladić
    • 1
  • Tanja Ćirković Veličković
    • 1
  • Zoran Vujčić
    • 1
  1. 1.Department of Biochemistry, Faculty of ChemistryUniversity of BelgradeBelgradeSerbia and Montenegro
  2. 2.Department of ChemistryIHTMBelgradeSerbia and Montenegro

Personalised recommendations