Biotechnology Letters

, Volume 27, Issue 6, pp 389–393

Enhancement of polyunsaturated fatty acid production by cerulenin treatment in polyunsaturated fatty acid-producing bacteria

  • Naoki Morita
  • Takanori Nishida
  • Mika Tanaka
  • Yutaka Yano
  • Hidetoshi Okuyama


When docosahexaenoic acid (DHA)-producing Moritella marina strain MP-1 was cultured in the medium containing 0.5 μ g cerulenin ml−1, an inhibitor for fatty acid biosynthesis, the cells grew normally, but the␣content of DHA in the total fatty acids increased from 5.9–19.4%. The DHA yield of M. marina strain MP-1 cells also increased from 4 to 13.7 mg l−1 by cerulenin treatment. The same effect of cerulenin was observed in eicosapentaenoic acid (EPA)-producing Shewanellamarinintestina strain IK-1 grown in the medium containing 7.5 μg cerulenin ml−1, and the cerulenin treatment increased the EPA yield from 1.6 to 8 mg l−1. The use of cerulenin is, therefore, advantageous to increase the content of intracellular polyunsaturated fatty acids (PUFA) in particular PUFA-containing phospholipids in bacterial cells.


cerulenin docosahexaenoic acid (DHA) eicosapentaenoic acid (EPA) polyunsaturated fatty acid (PUFA) PUFA-producing bacteria 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allen, EE, Facciotti, D, Bartlett, DH 1999Monounsaturated but not polyunsaturated fatty acids are required for growth of the deep-sea bacterium Photobacterium profundum SS9 at high pressure and low temperatureAppl. Environ. Microbiol.6517101720PubMedGoogle Scholar
  2. Bajpai, P, Bajpai, PK 1993Eicosapentaenoic acid (EPA) production from microorganisms: a reviewJ. Biotechnol.30161183CrossRefPubMedGoogle Scholar
  3. Bligh, EG, Dyer, WJ 1959A rapid method of total lipid extraction and purificationCan J. Biochem. Physiol.37911917PubMedGoogle Scholar
  4. Fang, J, Kato, C, Sato, T, Chan, O, McKay, D 2004Biosynthesis and dietary uptake of polyunsaturated fatty acids by piezophilic bacteriaComp. Biochem. Physiol. B. Biochem. Mol. Biol.137455461CrossRefPubMedGoogle Scholar
  5. Hibino, H, Tanaka, Y 1994Molecular structure and physiological functions of phospholipid containing docosahexaenoic acidJ. Jpn. Oil Chem. Soc.43687697(in Japanese)Google Scholar
  6. Kato, C, Nogi, Y 2001Correlation between phylogenetic structure and function: example from deep-sea ShewanellaFEMS Microbiol. Lett.35223230Google Scholar
  7. McMurry, LM, Oethinger, , M, , Levy, SB 1988Triclosan targets lipid synthesisNature394531532CrossRefGoogle Scholar
  8. Morita, N, Tanaka, M, Okuyama, H 2000Biosynthesis of fatty acids in the docosahexaenoic acid-producing bacterium Moritella marina strain MP-1Biochem. Soc. Transact.28943945CrossRefGoogle Scholar
  9. Morita, N, Ueno, A, Tanaka, M, Ohgiya, S, Hoshino, T, Kawasaki, K, Yumoto, I, Ishizaki, K, Okuyama, H 1999Cloning and sequencing of clustered genes involved in fatty acid biosynthesis from the docosahexaenoic acid-producing bacterium, Vibrio marinus strain MP-1Biotechnol. Lett.21641646CrossRefGoogle Scholar
  10. Nichols, D, Bowman, J, Sanderson, K, Nichols, CM, Lewis, T, McMeekin, T, Nichols, PD 1999Developments with antarctic micoorganisms: culture collections, bioactivity screening, taxonomy, PUFA production and cold-adapted enzymesCurr. Opin. Biotechnol.10240246CrossRefPubMedGoogle Scholar
  11. Oishi, H, Noto, T, Sasaki, H, Suzuki, K, Hayashi, T, Okazaki, H, Ando, K, Sawada, M 1982Thiolactomycin, a new antibiotic. I. Taxonomy of the producing organism, fermentation and biological propertiesJ. Antibiot (Tokyo).35391395Google Scholar
  12. Ratledge, C 2004Fatty acid biosynthesis in microorganisms being used for single cell oil productionBiochimie86807815CrossRefPubMedGoogle Scholar
  13. Russell, NJ, Nichols, DS 1999Polyunsaturated fatty acids in marine bacteria – a dogma rewrittenMicrobiology145767779PubMedCrossRefGoogle Scholar
  14. Satomi, M, Oikawa, H, Yano, Y 2003Shewanella marinintestina sp. nov., Shewanella schlegeliana sp. nov. and Shewanella sairae sp. nov., novel eicosapentaenoic acid-producing marine bacteria isolated from sea-animal intestinesInt. J. Syst. Evol. Microbiol.53491499CrossRefPubMedGoogle Scholar
  15. Singh, A, Ward, OP 1997Microbial production of docosahexaenoic acid (DHA, C22:6)Adv. Appl. Microbiol.45271312PubMedCrossRefGoogle Scholar
  16. Tanaka, M, Ueno, A, Kawasaki, K, Yumoto, I, Ohgiya, S, Hoshino, T, Ishizaki, K, Okuyama, H, Morita, N 1999Isolation of clustered genes that are notably homologous to the eicosapentaenoic acid biosynthesis gene cluster from the docosahexaenoic acid-producing bacterium Vibrio marinus strain MP-1Biotechnol. Lett.21939945CrossRefGoogle Scholar
  17. Tanaka, Y, Soda, Y, Ando, S 1993Modulation by phospholipids of acetylcholine release from mouse brain synaptosomeNeurochem. Res.18847(in Japanese)Google Scholar
  18. Urakawa, H, Kita-Tsukamoto, K, Steven, SE, Ohwada, K, Colwell, RR 1998A proposal to transfer Vibrio marinus (Russell 1891) to a new genus Moritella gen. nov. as Moritella marina comb. novFEMS Microbiol. Lett.165373378CrossRefPubMedGoogle Scholar
  19. Valentine, RC, Valentine, DL 2004Omega-3 fatty acids in cellular membranes: a unified conceptProg. Lipid Res.43383402CrossRefPubMedGoogle Scholar
  20. Yazawa, K, Masuzawa, Y 1991Phospholipids – Physiological activity of phospholipidsJ. Jpn. Oil Chem. Soc.40845857(in Japanese)Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Naoki Morita
    • 1
  • Takanori Nishida
    • 2
  • Mika Tanaka
    • 2
  • Yutaka Yano
    • 3
  • Hidetoshi Okuyama
    • 2
  1. 1.Research Institute of Genome-based BiofactoryNational Institute of Advanced Industrial Science and Technology (AIST)SapporoJapan
  2. 2.Laboratory of Environmental Molecular Biology, Graduate School of Environmental Earth ScienceHokkaido UniversitySapporoJapan
  3. 3.National Research Institute of Fisheries ScienceYokohama, KanagawaJapan

Personalised recommendations