Biotechnology Letters

, Volume 27, Issue 5, pp 355–362 | Cite as

Domain engineering of Saccharomyces cerevisiae exoglucanases

  • S. B. Gundllapalli. Moses
  • R. R. Cordero. Otero
  • I. S. Pretorius


To illustrate the effect of a cellulose-binding domain (CBD) on the enzymatic characteristics of non-cellulolytic exoglucanases, 10 different recombinant enzymes were constructed combining the Saccharomyces cerevisiae exoglucanases, EXG1 and SSG1, with the CBD2 from the Trichoderma reesei cellobiohydrolase, CBH2, and a linker peptide. The enzymatic activity of the recombinant enzymes increased with the CBD copy number. The recombinant enzymes, CBD2-CBD2-L-EXG1 and CBD2-CBD2-SSG1, exhibited the highest cellobiohydrolase activity (17.5 and 16.3 U mg −1 respectively) on Avicel cellulose, which is approximately 1.5- to 2-fold higher than the native enzymes. The molecular organisation of CBD in these recombinant enzymes enhanced substrate affinity, molecular flexibility and synergistic activity, contributing to their elevated action on the recalcitrant substrates as characterised by adsorption, kinetics, thermostability and scanning electron microscopic analysis.


cellulose-binding domain cellulose hydrolysis exoglucanases Saccharomyces cerevisiae 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Black, GW, Rixon, JE, Clarke, JH, Hazlewood, GP, Ferreira, LM, Bolam, DN, Gilbert, HJ 1997Cellulose binding domains and linker sequences potentiate the activity of hemicellulases against complex substratesJ. Biotechnol.575969Google Scholar
  2. Boisset, C, Fraschini, C, Schulein, M, Henrissat, B, Chanzy, H 2000Imaging the enzymatic digestion of bacterial cellulose ribbons reveals the endo character of the cellobiohydrolase Cel6A from Humicola insolens and its mode of synergy with cellobiohydrolase Cel7AAppl. Environ. Microbiol6614441452Google Scholar
  3. Boisset, C, Pétrequin, C, Chanzy, H, Henrissat, B, Schülein, M 2001Optimized mixtures of recombinant Humicola insolenscellulases for the biodegradation of crystalline celluloseBiotechnol. Bioeng72339345Google Scholar
  4. Gal, L, Pages, S, Gaudin, C, Belaich, A, Reverbel-Leroy, C, Tardif, C, Belaich, JP 1997Characterization of the cellulolytic complex (cellulosome) produced by Clostridium cellulolyticum.ApplEnviron. Microbiol.63903909Google Scholar
  5. Kataeva, IA, Blum, DL, Li, XL, Ljungdahl, LG 2001Do domain interactions of glycosyl hydrolases from Clostridium thermocellum contribute to protein thermostability?Protein. Eng.14167172Google Scholar
  6. Larriba, G, Andaluz, E, Cueva, R, Basco, RD 1995Molecular biology of yeast exoglucanasesFEMS Microbiol. Lett.125121126Google Scholar
  7. Lehtio, J, Sugiyama, J, Gustavsson, M, Fransson, L, Linder, M, Teeri, TT 2003The binding specificity and affinity determinants of family 1 and family 3 cellulose binding modulesProc. Natl. Acad. Sci. USA100484489Google Scholar
  8. Linder, M, Teeri, TT 1997The roles and function of cellulose-binding domainsJ. Bacteriol571528Google Scholar
  9. Linder, M, Salovuori, I, Ruohonen, L, Teeri, TT 1996Characterization of a double cellulose-binding domain Synergistic high affinity binding to crystalline cellulose.J. Biol. Chem.2712126821272Google Scholar
  10. Lönn, A, Gardonyi, M, van, ZW, Hahn, HB, Cordero Otero, R 2002Cold adaptation of xylose isomerase from Thermus thermophilus through random PCR mutagenesisGene cloning and protein characterization. Eur. J. Biochem.269157163Google Scholar
  11. Lynd, LR, Weimer, PJ, Van Zyl, WH, Pretorius, IS 2002Microbial cellulose utilization: fundamentals and biotechnologyMicrobiol. Mol. Biol. Rev.66506577Google Scholar
  12. Malherbe, DF, Du Toit, M, Cordero Otero, RR, Van Rensburg, P, Pretorius, IS 2003Expression of the Aspergillus niger glucose oxidase gene (GOX1) in Saccharomyces cerevisiae and its potential applications in wine productionAppl. Microbiol. Biotechnol.61502511Google Scholar
  13. Srisodsuk, M, Reinikainen, T, Penttilä, M, Teeri, TT 1993Role of the interdomain linker peptide of Trichoderma reesei cellobiohydrolase I in its interaction with crystalline celluloseJ. Biol. Chem.2682075620761Google Scholar
  14. Suzuki, K, Yabe, T, Maruyama, Y, Abe, K, Nakajima, T 2001Characterization of recombinant yeast exo-β-1,3-glucanase (Exg1p) expressed in Escherichia coli cellsBiosci. Biotechnol. Biochem.6513101314Google Scholar
  15. Tomme, P, Driver, DP, Amandoron, EA, Miller, RC,Jr., Antony, R, Warren, J, Kilburn, DG 1995Comparison of a fungal (family I) and bacterial (family II) cellulose-binding domain.J. Bacteriol17743564364Google Scholar
  16. Van Rensburg, P, Zyl, WH, Pretorius, IS 1997Over-expression of the Saccharomyces cerevisiae exo-β-1,3-glucanase gene together with the Bacillus subtilis endo-β-1,3 –1,4-glucanase gene and the Butyrivibrio fibrisolvensendo-β-1,4-glucanase gene in yeastJ. Biotechnol554353Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • S. B. Gundllapalli. Moses
    • 1
  • R. R. Cordero. Otero
    • 1
  • I. S. Pretorius
    • 1
    • 2
  1. 1.Institute for Wine Biotechnology and Department of Viticulture & OenologyStellenbosch UniversityStellenboschSouth Africa
  2. 2.The Australian Wine Research InstituteUrrbrae, AdelaideAustralia

Personalised recommendations