Advertisement

Genetic Diversity and Population Structure Analysis of Three Deep-Sea Amphipod Species from Geographically Isolated Hadal Trenches in the Pacific Ocean

  • Jiulin Chan
  • Binbin Pan
  • Daoqiang Geng
  • Qiming Zhang
  • Shun Zhang
  • Jian Guo
  • Qianghua XuEmail author
Original Article
  • 1 Downloads

Abstract

Amphipods of the superfamily Lysianassoidea that inhabit the hadal zone ( > 6000 m) have large bathymetric ranges and play a key role in deep ocean ecosystems. The endemism of these amphipod species makes them a good model for investigating potent natural selection and restricted dispersal in deep ocean trenches. Here, we describe genetic diversity and intraspecific population differentiation among three amphipod species from four Pacific trenches based on a mtDNA concatenated dataset (CO Ι and 16S rRNA genes) from 150 amphipod individuals. All amphipod populations had low genetic diversity, as indicated by haplotype and nucleotide diversity values. Population geographic relationship analysis of two Alicella gigantea populations revealed no genetic differentiation between these two localities (pairwise genetic differentiation coefficient = 0.00032, gene flow = 784.58), and the major variation (99.97%) was derived from variation within the populations. Historical demographic events were investigated using Tajima’s D and Fu’s F neutrality tests and analysis of mismatch distribution. Consistent results provided strong evidence to support the premise that demographic expansion occurred only for the Mariana population of Hirondellea gigas, possibly within the last 2.1–3.4 million years. These findings suggest that the formation of amphipod population structure might be the result of multiple factors including high hydrostatic pressure, food distribution, trench topographic forcing and potential ecological interactions.

Keywords

Hadal zone Hadal amphipod Genetic diversity Population structure 

Notes

Acknowledgements

We would like to thank all of the people for the sample collection. This work was supported in part by the National Key R&D Program of China (Grant No. 2018YFC0310600), the National Natural Science Foundation of China (Grant No. 31572598), the National Natural Science Foundation of China (Grant No. 31772826) and the National Natural Science Foundation of China (Grant No. 31572611).

Supplementary material

10528_2019_9935_MOESM1_ESM.docx (22 kb)
Supplementary file1 (DOCX 22 kb)
10528_2019_9935_MOESM2_ESM.docx (15 kb)
Supplementary file2 (DOCX 15 kb)

References

  1. Avise JC, Arnold J, Ball RM, Bermingham E, Lamb T, Neigel JE, Reeb CA, Saunders NC (1987) Intraspecific phylogeography: the mitochondrial DNA bridge between population genetics and systematics. Annu Rev Ecol Evol Syst 18:489–522CrossRefGoogle Scholar
  2. Billett DSM, Bett BJ, Reid WDK, Boorman B, Priede IG (2009) Long-term change in the abyssal NE Atlantic: the ‘Amperima Event’ revisited. Deep Sea Res Part II. 57:1406–1417CrossRefGoogle Scholar
  3. Blankenship LE, Yayanos AA, Cadien DB, Levin LA (2006) Vertical zonation patterns of scavenging amphipods from the hadal zone of the tonga and kermadec trenches. Deep Sea Res Part I 53(1):48–61CrossRefGoogle Scholar
  4. Chan JL, Li WW, Hu XX, Liu YM, Xu QH (2016) Genetic diversity and population structure analysis of qinghai-tibetan plateau schizothoracine fish (gymnocypris dobula) based on mtdna d-loop sequences. Biochem Syst Ecol 69:152–160CrossRefGoogle Scholar
  5. Chung PP, Hyne RV, Mann RM, Ballard JWO (2011) Temporal and geographical genetic variation in the amphipodMelita plumulosa (Crustacea: Melitidae): Link of a localized change in haplotype frequencies to a chemical spill. Chemosphere 82:1050–1055CrossRefGoogle Scholar
  6. Cossins AR, Macdonald AG (1986) Homeoviscous adaptation under pressure 3. The fatty-acid composition of liver mitochondrial phospholipids of deep-sea fish. Biochim Biophys Acta 860:325–335CrossRefGoogle Scholar
  7. Cowart D, Halanych K, Schaeffer S, Fisher C (2014) Depth-dependent geneflow in Gulf of Mexico cold seep Lamellibrachia tubeworms (Annelida, Siboglinidae). Hydrobiologia 736(1):139–154CrossRefGoogle Scholar
  8. Danovaro R, Gambi C, Della Croce N (2002) Meiofauna hotspot in the Atacama Trench, eastern South Pacific Ocean. Deep Sea Res I 49(5):843–857CrossRefGoogle Scholar
  9. Danovaro R, Dell’Anno A, Pusceddu A (2004) Biodiversity response to climate change in a warm deep-sea. Ecol Lett 7:821–828CrossRefGoogle Scholar
  10. Eustace R, Ritchie H, Kilgallen N, Piertney SB, Jamieson AJ (2016) Morphological and ontogenetic stratification of abyssal and hadal Eurythenes gryllus sensu lato (Amphipoda: lysianassoidea) from the Peru-Chile Trench. Deep Sea Res 109:91–98CrossRefGoogle Scholar
  11. Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10:564–567CrossRefGoogle Scholar
  12. Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376CrossRefGoogle Scholar
  13. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791CrossRefGoogle Scholar
  14. France S (1993) Geographic variation among three isolated populations of the hadal amphipod Hirondellea gigas (crustacea: amphipoda: lysianassoidea). Mar Ecol Prog 92(3):277–287CrossRefGoogle Scholar
  15. Fu YX (1997) Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147:915–925Google Scholar
  16. Guban P, Wennerstrom L, Elfwing T, Sundelin B, Laikre L (2015) Genetic diversity inMonoporeia affinisat polluted and reference site of the Baltic Bothnian Bay. Mar Pollut Bull 93:245–249CrossRefGoogle Scholar
  17. Harpending HC (1994) Signature of ancient population growth in a low-resolution mitochondrial DNA mismatch distribution. Hum Biol 66:591–600Google Scholar
  18. Havermans C (2016) Have we so far only seen the tip of the iceberg? Exploring species diversity and distribution of the giant amphipod Eurythenes. Biodiversity 17(1–2):12–25CrossRefGoogle Scholar
  19. Havermans C, Sonet G, D’Acoz C, Nagy Z, Martin P, Brix S, Held C (2013) Genetic and morphological divergences in the cosmopolitan deep-sea amphipod Eurythenes gryllus reveal a diverse abyss and a bipolar species. PLoS ONE 8(9):e74218CrossRefGoogle Scholar
  20. Hessler RR, Ingram CL, Yayanod AA, Burnett BR (1978) Scavenging amphipods from the floor of the Philippine Trench. Deep-Sea Res 25:1029–1047CrossRefGoogle Scholar
  21. Ichino MC, Clark MR, Drazen JC, Jamieson AJ, Jones DOB, Martin AP, Rowden AA, Shank TM, Yancey PH, Ruhl HA (2015) The distribution of benthic biomass in hadal trenches: a modelling approach to investigate the effect of vertical and lateral organic matter transport to the seafloor. Deep Sea Res Part I 3:1–49Google Scholar
  22. Ishizuka O, Tani K, Reagan MK, Kanayama K, Umino S, Harigane Y, Sakamoto I, Miyajima Y, Yuasa M, Dunkley DJ (2011) The timescales of subduction initiation and subsequent evolution of an oceanic island arc. Earth Planet Sci Lett 306:229–240CrossRefGoogle Scholar
  23. Jamieson A (2015) The hadal zone life in the deepest oceans. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  24. Jamieson A, Fujii T (2011) Trench connection. Biol Lett 7:641–643CrossRefGoogle Scholar
  25. Jamieson AJ, Fujii T, Solan M, Matsumoto A, Bagley PM, Priede IG (2009a) Liparid and macrouridfishes of the hadal zone: in situ observations of activity and feeding behaviour. Proc R Soc B Biol Sci 276:1037–1045CrossRefGoogle Scholar
  26. Jamieson AJ, Fujii T, Solan M, Matsumoto AK, Bagley PM, Priede IG (2009b) First findings of decapod crustacea in the hadal zone. Deep Sea Res Part I 56:641–647CrossRefGoogle Scholar
  27. Jamieson A, Fujii T, Mayor D, Solan M, Priede IG (2010) Hadal trenches: the ecology of the deepest places on earth. Trends Ecol Evol 25(3):190–197CrossRefGoogle Scholar
  28. Jamieson AJ, Lörz AN, Fujii T, Priede I (2012) In situ observations of trophic behaviour and locomotion of Princaxelia amphipods (Crustacea: pardaliscidae) at hadal depths in four West Pacific Trenches. J Mar Biol Assoc UK 92(1):143–150.CrossRefGoogle Scholar
  29. Jensen JL, Bohonak AJ, Kelly ST (2005) Isolation by distance, web service. BMC Genet 6:13CrossRefGoogle Scholar
  30. Johnson GC (1998) Deep water properties, velocities, and dynamics over ocean trenches. J Mar Res 56:239–347CrossRefGoogle Scholar
  31. Kilgallen N (2015) Three new species of Hirondellea (Crustacea, Amphipoda, Hirondelleidae) from hadal depths of the Peru-Chile Trench. Mar Biol Res 11(1):34–48CrossRefGoogle Scholar
  32. Knowlton N, Weigt LA (1998) New dates and new rates for divergence across the Isthmus of Panama. Proc R Soc Lond Ser. B Biol Sci 265:2257–2263CrossRefGoogle Scholar
  33. Kobayashi H, Hatada Y, Tsubouchi T, Nagahama T, Takami H (2012) The hadal amphipod hirondellea gigas possessing a unique cellulase for digesting wooden debris buried in the deepest seafloor. PLoS ONE 7(8):e42727CrossRefGoogle Scholar
  34. Lacey NC, Rowden AA, Clark MR, Kilgallen NM, Mayor DJ, Linley TD, Jamieson AJ (2016) Community structure and diversity of scavenging amphipods from bathyal to hadal depths in three South Pacific trenches. Deep Sea Res Part I 111:121–137CrossRefGoogle Scholar
  35. Linley TD, Stewart A, McMillan P, Clark M, Gerringer ME, Drazen JC, Fujii T, Jamieson AJ (2017) Bait attendingfishes of the abyssal zone and hadal boundary: community structure, functional groups and species distribution in the Kermadec, New Hebrides and Mariana trenches. Deep Sea Res Part I 121:38–53CrossRefGoogle Scholar
  36. Liu YP, Cao SX, Chen SY, Yao YG, Liu TZ (2009) Genetic diversity of Chinese domestic goat based on the mitochondrial DNA sequence variation. J Anim Breed Genet 126:80–89CrossRefGoogle Scholar
  37. Longhurst A (1995) Seasonal cycles of pelagic production and consumption. Prog Oceanogr 36:77–167CrossRefGoogle Scholar
  38. Peck LS, Webb KE, Bailey DM (2004) Extreme sensitivity of biological function to temperature in Antarctic marine species. Funct Ecol 18:625–630CrossRefGoogle Scholar
  39. Quattrini A, Baums I, Shank TM, Morrison CL, Cordes EE (2015) Testing the depth-differentiation hypothesis in a deepwater octocoral. Proc R Soc B 282(1807):1–9CrossRefGoogle Scholar
  40. Reagan MK, McClelland WC, Girard G, Goff KR, Peate DW, Ohara Y, Stern RJ (2013) The geology of the southern Mariana fore-arc crust: implications for the scale of Eocene volcanism in the western Pacific. Earth Planet Sci Lett 380:41–51CrossRefGoogle Scholar
  41. Rex M, Etter R (2010) Deep-sea biodiversity: pattern and scale. Harvard University Press, CambridgeGoogle Scholar
  42. Ribeiro J, Stern RJ, Martinez F, Ishizuka O, Merle SG, Kelley KA, Anthony EY, Ren M, Ohara Y, Reagan M, Girard G, Bloomer SH (2013) Geodynamic evolution of a forearc rift in the southernmost Mariana Arc. Isl Arc 22:453–476CrossRefGoogle Scholar
  43. Ritchie H, Jamieson AJ, Piertney SB (2015) Phylogenetic relationships among hadal amphipods of the Superfamily Lysianassoidea: Implications for taxonomy and biogeography. Deep-Sea Res I 105:119–131CrossRefGoogle Scholar
  44. Ritchie H, Jamieson AJ, Piertney SB (2017) Population genetic structure of two congeneric deep-sea amphipod species from geographically isolated hadal trenches in the Pacific Ocean. Deep-Sea Res I 119:50–57CrossRefGoogle Scholar
  45. Rogers AR, Harpending H (1992) Population growthmakes waves in the distribution of pairwise genetic differences. Mol Biol Evol 9:552–569Google Scholar
  46. Rozas J, Sanchez-Delbarrio JC, Messeguer X, Rozas R (2003) Dnasp, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19:2496–2497CrossRefGoogle Scholar
  47. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425Google Scholar
  48. Stern R (2002) Subduction zones. Rev Geophys 40:1–3.Google Scholar
  49. Swofford DL (2003) PAUP*: phylogenetic analysis using parsimony (* and other methods), version 4.0b10. Sinauer Associates, SunderlandGoogle Scholar
  50. Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585–595Google Scholar
  51. Tamura K, Stecher K, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729CrossRefGoogle Scholar
  52. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DJ (1997) The CLUSTAL-X windows interface:flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic acids Res 25:4876–4882CrossRefGoogle Scholar
  53. Tietjen JH, Deming JW, Rowe GT, Macko S, Wilke RJ (1989) Meiobenthos of the Hatteras abyssal plain and Puerto-Rico trench–abundance, biomass and association with bacteria and particulate fluxes. Deep Sea Res Part A 36(10):1567–1577CrossRefGoogle Scholar
  54. Wright S (1951) The genetical structure of populations. Ann Eugen 15:323–354.CrossRefGoogle Scholar
  55. Wright S (1978) Evolution and the genetics of populations, vol 4. University of Chicago Press, ChicagoGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Jiulin Chan
    • 2
  • Binbin Pan
    • 1
  • Daoqiang Geng
    • 2
  • Qiming Zhang
    • 4
  • Shun Zhang
    • 1
  • Jian Guo
    • 1
  • Qianghua Xu
    • 1
    • 2
    • 3
    Email author
  1. 1.Shanghai Engineering Research Center of Hadal Science & Technology, College of Marine SciencesShanghai Ocean UniversityShanghaiChina
  2. 2.Key Laboratory of Sustainable Exploitation of Oceanic Fisheries Resources, Ministry of Education, College of Marine SciencesShanghai Ocean UniversityShanghaiPeople’s Republic of China
  3. 3.National Distant-Water Fisheries Engineering Research CenterShanghai Ocean UniversityShanghaiChina
  4. 4.Shanghai Rainbowfish Ocean Technology Co., LtdShanghaiChina

Personalised recommendations