Expanding Phaseolus coccineus Genomic Resources: De Novo Transcriptome Assembly and Analysis of Landraces ‘Gigantes’ and ‘Elephantes’ Reveals Rich Functional Variation

  • Aliki Xanthopoulou
  • Christos Kissoudis
  • Ifigeneia Mellidou
  • Maria Manioudaki
  • Irene Bosmali
  • Vasilis Tsakonitis
  • Apostolos Kalivas
  • Maslin Osathanunkul
  • Athanasios Tsaftaris
  • Ioannis GanopoulosEmail author
  • Panagiotis MadesisEmail author
Original Article


Beans are one of the most important staple crops in the world. Runner bean (Phaseolus coccineus L.) is a small-scale agriculture crop compared to common bean (Phaseolusvulgaris). Beans have been introduced to Europe from the Central America to Europe and since then they have been scattered to different geographical regions. This has resulted in the generation of numerous local cultivars and landraces with distinguished characters and adaptive potential. To identify and characterize the underlying genomic variation of two very closely related runner bean cultivars, we performed RNA-Seq with de novo transcriptome assembly in two landraces of P. coccineus, ‘Gigantes’ and ‘Elephantes’ phenotypically distinct, differing in seed size and shape. The cleaned reads generated 37,379 and 37,774 transcripts for ‘Gigantes’ and ‘Elephantes,’ respectively. A total of 1896 DEGs were identified between the two cultivars, 1248 upregulated in ‘Elephantes’ and 648 upregulated in ‘Gigantes.’ A significant upregulation of defense-related genes was observed in ‘Elephantes,’ among those, numerous members of the AP2-EREBP, WRKY, NAC, and bHLH transcription factor families. In total, 3956 and 4322 SSRs were identified in ‘Gigantes’ and ‘Elephantes,’ respectively. Trinucleotide repeats were the most dominant repeat motif, accounting for 41.9% in ‘Gigantes’ and 40.1% in ‘Elephantes’ of the SSRs identified, followed by dinucleotide repeats (29.1% in both cultivars). Additionally, 19,281 putative SNPs were identified, among those 3161 were non-synonymous, thus having potential functional implications. High-confidence non-synonymous SNPs were successfully validated with an HRM assay, which can be directly adopted for P. coccineus molecular breeding. These results significantly expand the number of polymorphic markers within P. coccineus genus, enabling the robust identification of runner bean cultivars, the construction of high-resolution genetic maps, potentiating genome-wide association studies. They finally contribute to the genetic reservoir for the improvement of the closely related and intercrossable Phaseolus vulgaris.


Phaseolus coccineus RNA-seq Comparative transcriptomics Landraces SNPs 



This research has been co-financed by the European Union and Greek national funds through the Operational Program Competitiveness, Entrepreneurship and Innovation, under the call RESEARCH – CREATE – INNOVATE (Project Code: T1EDK-04718).

Supplementary material

10528_2019_9920_MOESM1_ESM.xlsx (1.6 mb)
Supplementary Table 1 (a) List of the total SNPs identified in the transcriptome of the two landraces, (b) list of SNPs after stringency filtering, (c) primers for selected SNP validation (XLSX 1662 kb)
10528_2019_9920_MOESM2_ESM.xlsx (10 kb)
Supplementary Table 2 List of the HRM validated SSR primers (XLSX 10 kb)
10528_2019_9920_MOESM3_ESM.xlsx (9.6 mb)
Supplementary Table 3 List of transcripts with associated GO terms that have been annotated in‘Gigantes’ and ‘Elephantes’ (XLSX 9794 kb)
10528_2019_9920_MOESM4_ESM.xlsx (144 kb)
Supplementary Table 4 The list of genes differentially expressed between the ‘Gigantes’ and ‘Elephantes’ (XLSX 145 kb)
10528_2019_9920_MOESM5_ESM.xlsx (15 kb)
Supplementary Table 5 The list of top 50 genes differentially expressed between the ‘Gigantes’ and ‘Elephantes’ (corresponding to Fig. 6 heat map) (XLSX 15 kb)
10528_2019_9920_MOESM6_ESM.tif (7.8 mb)
Supplementary Figure 1 Representative seeds from the cultivars 'Gigantes’ and ‘Elephantes’ (TIF 7949 kb)
10528_2019_9920_MOESM7_ESM.tif (2.5 mb)
Supplementary Figure 2 Gene ontology (GO) classification of assembled unigenes in ‘Gigantes’ and ‘Elephantes’using GO slim instances realized with cateGOrizer tool. Genes were classified by biological process, cellular component and molecular function (TIF 2604 kb)
10528_2019_9920_MOESM8_ESM.tif (2.5 mb)
Supplementary Figure 3 KEGG pathway clustering of DEGs upregulated in a) ‘Gigantes’ and b) ‘Elephantes’ (TIF 2599 kb)
10528_2019_9920_MOESM9_ESM.tif (2.1 mb)
Supplementary Figure 4 DEGs upregulated (green background) in the starch and sucrose metabolism pathway in (a) ‘Gigantes’ and (b) ‘Elephantes’ (TIF 2170 kb)
10528_2019_9920_MOESM10_ESM.tif (3.2 mb)
Supplementary Figure 5 DEGs upregulated (green background) in the MAPK signaling pathway in (a) ‘Gigantes’ and (b) ‘Elephantes’ (TIF 3279 kb)
10528_2019_9920_MOESM11_ESM.tif (2.5 mb)
Supplementary Figure 6 DEGs upregulated (green background) in the phenylpropanoid metabolic pathway in (a) ‘Gigantes’ and (b) ‘Elephantes’ (TIF 2564 kb)
10528_2019_9920_MOESM12_ESM.tif (2.2 mb)
Supplementary Figure 7 DEGs upregulated (green background) in the plant hormone signaling pathway in (a) ‘Gigantes’ and (b) ‘Elephantes’ (TIF 2303 kb)


  1. Acampora A, Ciaffi M, De Pace C, Paolacci AR, Tanzarella OA (2007) Pattern of variation for seed size traits and molecular markers in Italian germplasm of Phaseolus coccineus L. Euphytica 157(1):69–82. CrossRefGoogle Scholar
  2. Acosta-Gallegos JA, Kelly JD, Gepts P (2007) Prebreeding in common bean and use of genetic diversity from wild germplasm. Crop Sci 47(Supplement 3):S44–S59Google Scholar
  3. Ambawat S, Sharma P, Yadav NR, Yadav RC (2013) MYB transcription factor genes as regulators for plant responses: an overview. Physiol Mol Biol Plants 19(3):307–321CrossRefGoogle Scholar
  4. Bhawna G, Bonthala VS, Gajula MNVP (2016) PvTFDB: a Phaseolus vulgaris transcription factors database for expediting functional genomics in legumes. Database 2016:baw114114. CrossRefGoogle Scholar
  5. Bitocchi E, Rau D, Bellucci E, Rodriguez M, Murgia ML, Gioia T, Santo D, Nanni L, Attene G, Papa R (2017) Beans (Phaseolus ssp.) as a model for understanding crop evolution. Front Plant Sci. Google Scholar
  6. Boczkowska M, Bulińska-Radomska Z, Nowosielski J (2012) AFLP analysis of genetic diversity in five accessions of Polish runner bean (Phaseolus coccineus L.). Genet Resour Crop Evol 59(4):473–478. CrossRefGoogle Scholar
  7. Chen H, Chen X, Tian J, Yang Y, Liu Z, Hao X, Wang L, Wang S, Liang J, Zhang L (2016). Development of gene-based SSR markers in rice bean (Vigna umbellata L.) based on transcriptome data. PLoS ONE 11(3):e0151040CrossRefGoogle Scholar
  8. Du J, Wang S, He C, Zhou B, Ruan Y-L, Shou H (2017) Identification of regulatory networks and hub genes controlling soybean seed set and size using RNA sequencing analysis. J Exp Bot 68(8):1955–1972Google Scholar
  9. Escalante AM, Coello G, Eguiarte LE, Pinero D (1994) Genetic structure and mating systems in wild and cultivated populations of Phaseolus coccineus and P. vulgaris (Fabaceae). Am J Bot 81:1096–1103CrossRefGoogle Scholar
  10. Ganopoulos I, Bosmali I, Madesis P, Tsaftaris A (2012) Microsatellite genotyping with HRM (High Resolution Melting) analysis for identification of the PGI common bean variety Plake Megalosperma Prespon. Eur Food Res Technol 234(3):501–508CrossRefGoogle Scholar
  11. Ganopoulos I, Tsaballa A, Xanthopoulou A, Madesis P, Tsaftaris A (2013) Sweet cherry cultivar identification by high-resolution-melting (HRM) analysis using gene-based SNP markers. Plant Mol Biol Rep 31(3):763–768CrossRefGoogle Scholar
  12. Ge L, Yu J, Wang H, Luth D, Bai G, Wang K, Chen R (2016) Increasing seed size and quality by manipulating BIG SEEDS1 in legume species. Proc Natl Acad Sci USA 113(44):12414–12419CrossRefGoogle Scholar
  13. Golan I, Dominguez PG, Konrad Z, Shkolnik-Inbar D, Carrari F, Bar-Zvi D (2014) Tomato ABSCISIC ACID STRESS RIPENING (ASR) gene family revisited. PLoS ONE 9(10):e107117. CrossRefGoogle Scholar
  14. Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 29(7):644–652CrossRefGoogle Scholar
  15. Gramazio P, Blanca J, Ziarsolo P, Herraiz F, Plazas M, Prohens J, Vilanova S (2016). Transcriptome analysis and molecular marker discovery in Solanum incanum and S. aethiopicum, two close relatives of the common eggplant (Solanum melongena) with interest for breeding. BMC Genomics 17(1):300CrossRefGoogle Scholar
  16. Gu Y, Li W, Jiang H, Wang Y, Gao H, Liu M, Chen Q, Lai Y, He C (2017) Differential expression of a WRKY gene between wild and cultivated soybeans correlates to seed size. J Exp Bot 68(11):2717–2729CrossRefGoogle Scholar
  17. Guerra-García A, Suárez-Atilano M, Mastretta-Yanes A, Delgado-Salinas A, Piñero D (2017) Domestication genomics of the open-pollinated scarlet runner bean (Phaseolus coccineus L.). Front Plant Sci 8:1891. Google Scholar
  18. Hao C, Xia Z, Fan R, Tan L, Hu L, Wu B, Wu H (2016) De novo transcriptome sequencing of black pepper (Piper nigrum L.) and an analysis of genes involved in phenylpropanoid metabolism in response to Phytophthora capsici. BMC Genomics 17(1):822CrossRefGoogle Scholar
  19. Hutchison CE, Li J, Argueso C, Gonzalez M, Lee E, Lewis MW, Maxwell BB, Perdue TD, Schaller GE, Alonso JM, Ecker JR, Kieber JJ (2006) The Arabidopsis histidine phosphotransfer proteins are redundant positive regulators of cytokinin signaling. Plant Cell 18(11):3073–3087. CrossRefGoogle Scholar
  20. Hyten DL, Song Q, Fickus EW, Quigley CV, Lim J-S, Choi I-Y, Hwang E-Y, Pastor-Corrales M, Cregan PB (2010) High-throughput SNP discovery and assay development in common bean. BMC Genomics 11(1):475. CrossRefGoogle Scholar
  21. Kage U, Kumar A, Dhokane D, Karre S, Kushalappa AC (2016) Functional molecular markers for crop improvement. Crit Rev Biotechnol 36(5):917–930CrossRefGoogle Scholar
  22. Kalavacharla V, Liu Z, Meyers BC, Thimmapuram J, Melmaiee K (2011) Identification and analysis of common bean (Phaseolus vulgaris L.) transcriptomes by massively parallel pyrosequencing. BMC Plant Biol 11(1):135CrossRefGoogle Scholar
  23. Kole C, Muthamilarasan M, Henry R, Edwards D, Sharma R, Abberton M, Batley J, Bentley A, Blakeney M, Bryant J (2015) Application of genomics-assisted breeding for generation of climate resilient crops: progress and prospects. Front Plant Sci 6:563CrossRefGoogle Scholar
  24. Kumar S, Banks TW, Cloutier S (2012) SNP discovery through next-generation sequencing and its applications. Int J Plant Genomics 2012:831460Google Scholar
  25. Li N, Li Y (2015) Maternal control of seed size in plants. J Exp Bot 66(4):1087–1097CrossRefGoogle Scholar
  26. Li N, Li Y (2016) Signaling pathways of seed size control in plants. Curr Opin Plant Biol 33:23–32CrossRefGoogle Scholar
  27. Li J, Nie X, Tan JLH, Berger F (2013) Integration of epigenetic and genetic controls of seed size by cytokinin in Arabidopsis. Proc Natl Acad Sci USA 110(38):15479–15484. CrossRefGoogle Scholar
  28. Li J, Dai X, Zhuang Z, Zhao PX (2016) LegumeIP 2.0—a platform for the study of gene function and genome evolution in legumes. Nucleic Acids Res 44(D1):D1189–D1194. CrossRefGoogle Scholar
  29. Madesis P, Ganopoulos I, Sakaridis I, Argiriou A, Tsaftaris A (2014) Advances of DNA-based methods for tracing the botanical origin of food products. Food Res Int 60:163–172CrossRefGoogle Scholar
  30. Mavromatis A, Arvanitoyannis I, Chatzitheodorou V, Kaltsa A, Patsiaoura I, Nakas C (2012) A comparative study among landraces of Phaseolus vulgaris L. and P. coccineus L. based on molecular, physicochemical and sensory analysis for authenticity purposes. Sci Hortic 144:10–18CrossRefGoogle Scholar
  31. Metzgar D, Bytof J, Wills C (2000) Selection against frameshift mutations limits microsatellite expansion in coding DNA. Genome Res 10(1):72–80Google Scholar
  32. Mun J-H, Kim D-J, Choi H-K, Gish J, Debellé F, Mudge J, Denny R, Endré G, Saurat O, Dudez A-M (2006) Distribution of microsatellites in the genome of Medicago truncatula: a resource of genetic markers that integrate genetic and physical maps. Genetics 172(4):2541–2555CrossRefGoogle Scholar
  33. Nuruzzaman M, Sharoni AM, Kikuchi S (2013) Roles of NAC transcription factors in the regulation of biotic and abiotic stress responses in plants. Front Microbiol 4:248CrossRefGoogle Scholar
  34. Padder BA, Kamfwa K, Awale HE, Kelly JD (2016) Transcriptome profiling of the Phaseolus vulgaris–Colletotrichum lindemuthianum pathosystem. PLoS ONE 11(11):e0165823. CrossRefGoogle Scholar
  35. Puchta H (2017) Applying CRISPR/Cas for genome engineering in plants: the best is yet to come. Curr Opin Plant Biol 36:1–8CrossRefGoogle Scholar
  36. Rendón-Anaya M, Montero-Vargas JM, Saburido-Álvarez S, Vlasova A, Capella-Gutierrez S, Ordaz-Ortiz JJ, Aguilar OM, Vianello-Brondani RP, Santalla M, Delaye L, Gabaldón T, Gepts P, Winkler R, Guigó R, Delgado-Salinas A, Herrera-Estrella A (2017) Genomic history of the origin and domestication of common bean unveils its closest sister species. Genome Biol 18(1):60. CrossRefGoogle Scholar
  37. Rodiño AP, Lema M, Pérez-Barbeito M, Santalla M, De Ron AM (2007) Assessment of runner bean (Phaseolus coccineus L.) germplasm for tolerance to low temperature during early seedling growth. Euphytica 155(1–2):63–70CrossRefGoogle Scholar
  38. Rodriguez M, Rau D, Angioi SA, Bellucci E, Bitocchi E, Nanni L, Knüpffer H, Negri V, Papa R, Attene G (2013) European Phaseolus coccineus L. landraces: population structure and adaptation, as revealed by cpSSRs and phenotypic analyses. PLoS ONE 8(2):e57337. CrossRefGoogle Scholar
  39. Rubiales D, Mikic A (2015) Introduction: legumes in sustainable agriculture. Taylor & Francis, Boca RatonGoogle Scholar
  40. Santalla M, Monteagudo A, González A, De Ron A (2004) Agronomical and quality traits of runner bean germplasm and implications for breeding. Euphytica 135(2):205–215CrossRefGoogle Scholar
  41. Schmutz J, McClean PE, Mamidi S, Wu GA, Cannon SB, Grimwood J, Jenkins J, Shu S, Song Q, Chavarro C, Torres-Torres M, Geffroy V, Moghaddam SM, Gao D, Abernathy B, Barry K, Blair M, Brick MA, Chovatia M, Gepts P, Goodstein DM, Gonzales M, Hellsten U, Hyten DL, Jia G, Kelly JD, Kudrna D, Lee R, Richard MMS, Miklas PN, Osorno JM, Rodrigues J, Thareau V, Urrea CA, Wang M, Yu Y, Zhang M, Wing RA, Cregan PB, Rokhsar DS, Jackson SA (2014) A reference genome for common bean and genome-wide analysis of dual domestications. Nat Genet 46(7):707–713. CrossRefGoogle Scholar
  42. Schröder S, Mamidi S, Lee R, McKain MR, McClean PE, Osorno JM (2016) Optimization of genotyping by sequencing (GBS) data in common bean (Phaseolus vulgaris L.). Mol Breed 36(1):6. CrossRefGoogle Scholar
  43. Schwartz HF, Otto K, Terán H, Lema M, Singh SP (2006) Inheritance of white mold resistance in Phaseolus vulgaris × P. coccineus crosses. Plant Dis 90(9):1167–1170CrossRefGoogle Scholar
  44. Schwember AR, Carrasco B, Gepts P (2017) Unraveling agronomic and genetic aspects of runner bean (Phaseolus coccineus L.). Field Crops Res 206:86–94. CrossRefGoogle Scholar
  45. Shan Q, Wang Y, Li J, Gao C (2014) Genome editing in rice and wheat using the CRISPR/Cas system. Nature Protoc 9(10):2395–2410CrossRefGoogle Scholar
  46. Sicard D, Nanni L, Porfiri O, Bulfon D, Papa R (2005) Genetic diversity of Phaseolus vulgaris L. and P. coccineus L. landraces in central Italy. Plant Breed 124(5):464–472. CrossRefGoogle Scholar
  47. Spataro G, Tiranti B, Arcaleni P, Bellucci E, Attene G, Papa R, Zeuli PS, Negri V (2011) Genetic diversity and structure of a worldwide collection of Phaseolus coccineus L. Theor Appl Genet 122(7):1281–1291CrossRefGoogle Scholar
  48. Tanwar UK, Pruthi V, Randhawa GS (2017) RNA-seq of guar (Cyamopsis tetragonoloba, L. Taub.) leaves: de novo transcriptome assembly, functional annotation and development of genomic resources. Front Plant Sci 8:91. Google Scholar
  49. Torre S, Tattini M, Brunetti C, Guidi L, Gori A, Marzano C, Landi M, Sebastiani F (2016) De novo assembly and comparative transcriptome analyses of red and green morphs of sweet basil grown in full sunlight. PLoS ONE 11(8):e0160370CrossRefGoogle Scholar
  50. Vatanparast M, Shetty P, Chopra R, Doyle JJ, Sathyanarayana N, Egan AN (2016) Transcriptome sequencing and marker development in winged bean (Psophocarpus tetragonolobus; Leguminosae). Sci Rep 6:29070CrossRefGoogle Scholar
  51. Vaz Patto MC, Amarowicz R, Aryee AN, Boye JI, Chung H-J, Martín-Cabrejas MA, Domoney C (2015) Achievements and challenges in improving the nutritional quality of food legumes. Crit Rev Plant Sci 34(1–3):105–143CrossRefGoogle Scholar
  52. Vlasova A, Capella-Gutiérrez S, Rendón-Anaya M, Hernández-Oñate M, Minoche AE, Erb I, Câmara F, Prieto-Barja P, Corvelo A, Sanseverino W, Westergaard G, Dohm JC, Pappas GJ, Saburido-Alvarez S, Kedra D, Gonzalez I, Cozzuto L, Gómez-Garrido J, Aguilar-Morón MA, Andreu N, Aguilar OM, Garcia-Mas J, Zehnsdorf M, Vázquez MP, Delgado-Salinas A, Delaye L, Lowy E, Mentaberry A, Vianello-Brondani RP, García JL, Alioto T, Sánchez F, Himmelbauer H, Santalla M, Notredame C, Gabaldón T, Herrera-Estrella A, Guigó R (2016) Genome and transcriptome analysis of the Mesoamerican common bean and the role of gene duplications in establishing tissue and temporal specialization of genes. Genome Biol 17(1):32. CrossRefGoogle Scholar
  53. Wang Z, Yu G, Shi B, Wang X, Qiang H, Gao H (2014) Development and characterization of simple sequence repeat (SSR) markers based on RNA-sequencing of Medicago sativa and in silico mapping onto the M. truncatula genome. PLoS ONE 9(3):e92029CrossRefGoogle Scholar
  54. Wang N, Xia E-H, Gao L-Z (2016) Genome-wide analysis of WRKY family of transcription factors in common bean, Phaseolus vulgaris: chromosomal localization, structure, evolution and expression divergence. Plant Gene 5:22–30. CrossRefGoogle Scholar
  55. Xanthopoulou A, Ganopoulos I, Tsaballa A, Nianiou-Obeidat I, Kalivas A, Tsaftaris A, Madesis P (2014) Summer squash identification by High-Resolution-Melting (HRM) analysis using gene-based EST–SSR molecular markers. Plant Mol Biol Rep 32(2):395–405CrossRefGoogle Scholar
  56. Xanthopoulou A, Ganopoulos I, Psomopoulos F, Manioudaki M, Moysiadis T, Kapazoglou A, Osathanunkul M, Michailidou S, Kalivas A, Tsaftaris A (2017) De novo comparative transcriptome analysis of genes involved in fruit morphology of pumpkin cultivars with extreme size difference and development of EST-SSR markers. Gene 622:50–66CrossRefGoogle Scholar
  57. Yang T, Bao S, Ford R, Jia T, Guan J, He Y, Sun X, Jiang J, Hao J, Zhang X (2012) High-throughput novel microsatellite marker of faba bean via next generation sequencing. BMC Genomics 13(1):602CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Aliki Xanthopoulou
    • 1
  • Christos Kissoudis
    • 2
  • Ifigeneia Mellidou
    • 3
  • Maria Manioudaki
    • 4
  • Irene Bosmali
    • 1
  • Vasilis Tsakonitis
    • 3
  • Apostolos Kalivas
    • 3
  • Maslin Osathanunkul
    • 5
    • 6
  • Athanasios Tsaftaris
    • 2
  • Ioannis Ganopoulos
    • 3
    Email author
  • Panagiotis Madesis
    • 1
    Email author
  1. 1.Institute of Applied BiosciencesCERTHThessalonikiGreece
  2. 2.Perrotis CollegeAmerican Farm SchoolThessalonikiGreece
  3. 3.Institute of Plant Breeding and Genetic ResourcesELGO-DEMETERThessalonikiGreece
  4. 4.Centre for Clinical, Experimental Surgery & Translational ResearchBiomedical Research Foundation Academy of AthensAthensGreece
  5. 5.Department of Biology, Faculty of ScienceChiang Mai UniversityChiang MaiThailand
  6. 6.Center of Excellence in Bioresources for Agriculture, Industry and MedicineChiang Mai UniversityChiang MaiThailand

Personalised recommendations