Advertisement

Engineering Corynebacterium glutamicum Mutants for 3-Methyl-1-butanol Production

  • Yu Zhang
  • Xiaohuan Zhang
  • Shiyuan Xiao
  • Wei QiEmail author
  • Jingliang XuEmail author
  • Zhenhong Yuan
  • Zhongming Wang
Original Article
  • 51 Downloads

Abstract

3-Methyl-1-butanol (3MB) is a promising biofuel that can be produced from 2-ketoisocaproate via the common l-leucine biosynthesis pathway. Corynebacterium glutamicum was chosen as a host bacterium because of its strong resistance to isobutanol. In the current study, several strategies were designed to overproduce 3MB in C. glutamicum through a non-fermentation pathway. The engineered C. glutamicum mutant was obtained by silencing the pyruvate dehydrogenase gene complex (aceE) and deleting the lactic dehydrogenase gene (ldh), followed by mutagenesis with diethyl sulfate (DES) and selection with Fmoc-3-4-thiazolyl-l-alanine (FTA). The mutant could produce 659 mg/L of 3MB after 12 h of incubation. To facilitate carbon flux to 3MB biosynthesis, the engineered recombinant was also constructed without branched-chain acid aminotransferase (ilvE) activity by deleting the ilvE gene. This recombinant could produce 697 mg/L of 3MB after 12 h of incubation.

Keywords

3-Methyl-1-butanol l-Leucine Corynebacterium glutanicum Mutation breeding Non-fermentation pathway 

Notes

Acknowledgements

This research was financially supported by National Natural Science Foundation of China (21506215 and 21811530626), Municipal Science and Technology Program of Guangzhou (China) (201804010081).

References

  1. Atsumi S, Hanai T, Liao JC (2008) Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature 451:86–U13.  https://doi.org/10.1038/nature06450 CrossRefGoogle Scholar
  2. Bueckle-Vallant V, Krause FS, Messerschmidt S, Eikmanns BJ (2014) Metabolic engineering of Corynebacterium glutamicum for 2-ketoisocaproate production. Appl Microbiol Biotechnol 98:297–311.  https://doi.org/10.1007/s00253-013-5310-2 CrossRefGoogle Scholar
  3. Connor MR, Cann AF, Liao JC (2010) 3-Methyl-1-butanol production in Escherichia coli: random mutagenesis and two-phase fermentation. Appl Microbiol Biotechnol 86:1155–1164.  https://doi.org/10.1007/s00253-009-2401-1 CrossRefGoogle Scholar
  4. Hohmann S (2002) Osmotic adaptation in yeast-control of the yeast osmolyte system. Int Rev Cytol 215:149–187CrossRefGoogle Scholar
  5. Ichihara A, Koyama E (1966) Transaminase of branched chain amino acids. I. Branched chain amino acids-alpha-ketoglutarate transaminase. J Biochem 59:160CrossRefGoogle Scholar
  6. Isken S, de Bont JAM (1998) Bacteria tolerant to organic solvents. Extremophiles 2:229–238.  https://doi.org/10.1007/s007920050065 CrossRefGoogle Scholar
  7. Jojima T, Inui M, Yukawa H (2013) Biorefinery Applications of Corynebacterium glutamicum. In: Yukawa H, Inui M (eds) Corynebacterium glutamicum. Microbiology Monographs. Springer-Verlag, Berlin, pp 149–172CrossRefGoogle Scholar
  8. Kalinowski J et al. (2003) The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of l-aspartate-derived amino acids and vitamins. J Biotechnol 104:5–25.  https://doi.org/10.1016/s0168-1656(03)00154-8 CrossRefGoogle Scholar
  9. Li S (2011) Biofuel as an alternative to oil—current industry progress and sustainable development. Eng Sci 13:50–56Google Scholar
  10. Liu Y, Liu H, Zhang J, Cheng K, Chen Z (2008) Research progress in new biofuel butanol Xiandai Huagong/modern. Chem Ind 28(28–31):33Google Scholar
  11. Nozzi NE, Desai SH, Case AE, Atsumi S (2014) Metabolic engineering for higher alcohol production. Metab Eng 25:174–182.  https://doi.org/10.1016/j.ymben.2014.07.007 CrossRefGoogle Scholar
  12. Park S-H, Kim S, Hahn J-S (2014) Metabolic engineering of Saccharomyces cerevisiae for the production of isobutanol and 3-methyl-1-butanol. Appl Microbiol Biotechnol 98:9139–9147.  https://doi.org/10.1007/s00253-014-6081-0 CrossRefGoogle Scholar
  13. Patek M, Krumbach K, Eggeling L, Sahm H (1994) Leucine synthesis in corynebacterium-glutamicum— enzyme-activities, structure of leua, and effect of leua inactivation on lysine synthesis. Appl Environ Microbiol 60:133–140Google Scholar
  14. van der Rest ME, Lange C, Molenaar D (1999) A heat shock following electroporation induces highly efficient transformation of Corynebacterium glutamicum with xenogeneic plasmid DNA. Appl Microbiol Biotechnol 52:541–545CrossRefGoogle Scholar
  15. Schafer A, Tauch A, Jager W, Kalinowski J, Thierbach G, Puhler A (1994) Small mobilizable multipurpose cloning vectors derived from the Escherichia-coli plasmids PK18 and PK19—selection of defined deletions in the chromosome of corynebacterium-glutamicum. Gene 145:69–73.  https://doi.org/10.1016/0378-1119(94)90324-7 CrossRefGoogle Scholar
  16. Sikkema J, Debont JAM, Poolman B (1995) Mechanisms of membrane toxicity of hydrocarbons. Microbiol Rev 59:201–222Google Scholar
  17. Smit B, Vlieg J, Engels W, Wouters J, Smit G (2005) Identification, cloning, and characterization of a Lactococcus lactis branched-chain alpha-keto acid decarboxylase involved in flavor formation. Appl Environ Microbiol 71:303–311CrossRefGoogle Scholar
  18. Smith KM, Cho K-M, Liao JC (2010) Engineering Corynebacterium glutamicum for isobutanol production. Appl Microbiol Biotechnol 87:1045–1055.  https://doi.org/10.1007/s00253-010-2522-6 CrossRefGoogle Scholar
  19. Su HF, Lin JF, Wang GW (2016) Metabolic engineering of Corynebacterium crenatium for enhancing production of higher alcohols. Sci Rep 6:39543CrossRefGoogle Scholar
  20. Taylor RT, Jenkins WT (1966) Leucine aminotransferase. II. Purification and characterization J Biol Chem 241:4396–4405Google Scholar
  21. Tsuchida T, Yoshinaga F, Kubota K, Momose H, Okumura S (1975) Cultural conditions for l-leucine production by strain no 218, a mutant of Brevibacterium-Lactofermentum 2256. Agric Biol Chem 39:1149–1153Google Scholar
  22. Vogt M, Haas S, Klaffl S, Polen T, Eggeling L, van Ooyen J, Bott M (2014) Pushing product formation to its limit: metabolic engineering of Corynebacterium glutamicum for l-leucine overproduction. Metab Eng 22:40–52CrossRefGoogle Scholar
  23. Vogt M, Haas S, Polen T, van Ooyen J, Bott M (2015) Production of 2-ketoisocaproate with Corynebacterium glutamicum strains devoid of plasmids and heterologous genes Microb Biotechnol 8:351–360CrossRefGoogle Scholar
  24. Vogt M, Bruesseler C, van Ooyen J, Bott M, Marienhagen J (2016) Production of 2-methyl-1-butanol and 3-methyl-1-butanol in engineered Corynebacterium glutamicum. Metab Eng 38:436–445.  https://doi.org/10.1007/s00253-010-2522-6 CrossRefGoogle Scholar
  25. Wang BW, Shi AQ, Tu R, Zhang XL, Wang QH, Bai FW (2012) Branched-Chain Higher Alcohols. In: Bai FW, Liu CG, Huang H, Tsao GT (eds) Biotechnology in China Iii: Biofuels and Bioenergy, vol 128. Adv Biochem Eng Biotechnol.  https://doi.org/10.1007/10_2011_121
  26. Xiao S, Xu J, Chen X, Li X, Zhang Y, Yuan Z (2016) Corynebacterium glutamicum. Mol Biotechnol 58:311–318.  https://doi.org/10.1007/s12033-016-9929-y CrossRefGoogle Scholar
  27. Yu RYYM, Chen LR (2005) The principle and method of biochemistry experiment. Peking University Press, BeijingGoogle Scholar
  28. Zhang K, Sawaya MR, Eisenberg DS, Liao JC (2008) Expanding metabolism for biosynthesis of nonnatural alcohols. Proc Natl Acad Sci USA 105:20653–20658.  https://doi.org/10.1073/pnas.0807157106 CrossRefGoogle Scholar
  29. Zhu GJ (1994) Industrial microbiology experiment technical handbook. China light Industry Press, BeijingGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Yu Zhang
    • 1
    • 2
    • 3
  • Xiaohuan Zhang
    • 1
    • 2
    • 3
    • 4
  • Shiyuan Xiao
    • 1
    • 2
    • 3
    • 4
  • Wei Qi
    • 1
    • 2
    • 3
    Email author
  • Jingliang Xu
    • 5
    Email author
  • Zhenhong Yuan
    • 1
    • 2
    • 3
  • Zhongming Wang
    • 1
    • 2
    • 3
  1. 1.Guangzhou Institute of Energy ConversionChinese Academy of SciencesGuangzhouChina
  2. 2.CAS Key Laboratory of Renewable EnergyGuangzhouChina
  3. 3.Guangdong Provincial Key Laboratory of New and Renewable Energy Research and DevelopmentGuangzhouChina
  4. 4.University of Chinese Academy of SciencesBeijingChina
  5. 5.School of Chemical Engineering and EnergyZhengzhou UniversityZhengzhouChina

Personalised recommendations