Advertisement

Biochemical Genetics

, Volume 55, Issue 1, pp 34–47 | Cite as

Evaluation of 5-HT7 Receptor Trafficking on In Vivo and In Vitro Model of Lipopolysaccharide (LPS)-Induced Inflammatory Cell Injury in Rats and LPS-Treated A549 Cells

  • Gulsen Ayaz
  • Zekai Halici
  • Abdulmecit AlbayrakEmail author
  • Emre Karakus
  • Elif Cadirci
Original Article

Abstract

This study aimed to investigate the effects of the 5-HT7 receptor agonist (LP44) and antagonist (SB269970) on LPS-induced in vivo tissue damage and cell culture by molecular methods. This study was conducted in two steps. For in vivo studies, 24 female rats were divided into four groups. Group I: healthy; II (2nd h): LPS 5 mg/kg administered intraperitoneally (i.p.); III (4th h): LPS 5 mg/kg administered i.p.; IV (8th h): LPS 5 mg/kg administered i.p. For in vitro studies, we used the A549 cell line. Groups: I control (healthy) (2–4 h); II LPS: 1 µg/ml E. Coli O55:B5 strain (2–4 h); III agonist (LP44) 10−9 M (2–4 h); IV antagonist (SB269970) 10−9 M (2–4 h); V LPS+agonist 10−9 M (LP44 1 µg/ml) (2–4 h); VI LPS+antagonist 10−9 M (2–4 h). In molecular analyses, we determined increased TNF-α, IL-1β, NF-κB, and 5-HT7 mRNA expressions in rat lung tissues and increased TNF-α, iNOS, and 5-HT7 mRNA expressions in the A549 cell line. In in vitro parameters, LP44 agonist administration-related decrease was observed. Our study showed that lung 5-HT7 receptor expression is increased in LPS-induced endotoxemia. All this data suggest that 5-HT7 receptor overexpression is an important protective mechanism during LPS-induced sepsis-related cell damage.

Keywords

5-HT7 LPS Sepsis LP44 SB269970 

Notes

Acknowledgments

This study was supported by the TUBITAK 1001 project (TUBITAK-112S627) and was conducted in the pharmacology of the Faculty of Medicine at Ataturk University, 25240 Erzurum/Turkey. This study is a part of Master thesis of Gulsen AYAZ.

Compliance with Ethical Standards

Conflict of Interest

None of the authors has a commercial interest, financial interest, and/or other relationship with manufacturers of pharmaceuticals, laboratory supplies, and/or medical devices or with commercial providers of medically related services.

References

  1. Akça AGH (2007) Immuniteye Genel Bakış ve Paraziter Hastalıklarda Immunite. Tıbbi ve Veteriner Immunoparazitoloji, Türkiye: Parazitoloji Derneği Yayınları. Yayın No:21. İzmir, p 430–431Google Scholar
  2. Aladağ MA, Türköz Y, Özerol İH (2000) Nitrik oksit ve nörofizyopatolojik etkileri. Turkiye Klinikleri J Med Sci 20(2):107–111Google Scholar
  3. Albayrak A, Halici Z, Cadirci E, Polat B, Karakus E, Bayir Y et al (2013) Inflammation and peripheral 5-HT7 receptors: the role of 5-HT7 receptors in carrageenan induced inflammation in rats. Eur J Pharmacol 715(1–3):270–279CrossRefPubMedGoogle Scholar
  4. Albrecht EW, Stegeman CA, Heeringa P, Henning RH, van Goor H (2003) Protective role of endothelial nitric oxide synthase. J Pathol 199(1):8–17CrossRefPubMedGoogle Scholar
  5. Baeuerle PA (1998) Pro-inflammatory signaling: last pieces in the NF-κB puzzle? Curr Biol 8(1):R19–R22CrossRefPubMedGoogle Scholar
  6. Benedict CR, Mathew B, Rex KA, Cartwright J Jr, Sordahl LA (1986) Correlation of plasma serotonin changes with platelet aggregation in an in vivo dog model of spontaneous occlusive coronary thrombus formation. Circ Res 58(1):58–67CrossRefPubMedGoogle Scholar
  7. Bhatia M, Moochhala S (2004) Role of inflammatory mediators in the pathophysiology of acute respiratory distress syndrome. J Pathol 202(2):145–156CrossRefPubMedGoogle Scholar
  8. Buras JA, Holzmann B, Sitkovsky M (2005) Animal models of sepsis: setting the stage. Nat Rev Drug Discov 4(10):854–865CrossRefPubMedGoogle Scholar
  9. Cadirci E, Halici Z, Bayir Y, Albayrak A, Karakus E, Polat B et al (2013) Peripheral 5-HT7 receptors as a new target for prevention of lung injury and mortality in septic rats. Immunobiology 218(10):1271–1283CrossRefPubMedGoogle Scholar
  10. Cazzola M, Matera MG (2000) 5-HT modifiers as a potential treatment of asthma. Trends Pharmacol Sci 21(1):13–16CrossRefPubMedGoogle Scholar
  11. Chen X-M, O’Hara SP, Nelson JB, Splinter PL, Small AJ, Tietz PS et al (2005) Multiple TLRs are expressed in human cholangiocytes and mediate host epithelial defense responses to Cryptosporidium parvum via activation of NF-κB. J Immunol 175(11):7447–7456CrossRefPubMedGoogle Scholar
  12. Damas P, Ledoux D, Nys M, Vrindts Y, De Groote D, Franchimont P et al (1992) Cytokine serum level during severe sepsis in human IL-6 as a marker of severity. Ann Surg 215(4):356CrossRefPubMedPubMedCentralGoogle Scholar
  13. Dean B, Pavey G, Thomas D, Scarr E (2006) Cortical serotonin7, 1D and 1F receptors: effects of schizophrenia, suicide and antipsychotic drug treatment. Schizophr Res 88(1–3):265–274CrossRefPubMedGoogle Scholar
  14. Dejager L, Pinheiro I, Dejonckheere E, Libert C (2011) Cecal ligation and puncture: the gold standard model for polymicrobial sepsis? Trends Microbiol 19(4):198–208CrossRefPubMedGoogle Scholar
  15. Demling RH, Wong C, Fox R, Hechtman H, Huval W (1985) Relationship of increased lung serotonin levels to endotoxin-induced pulmonary hypertension in sheep. Effect of a serotonin antagonist. Am Rev Respir Dis 132(6):1257–1261PubMedGoogle Scholar
  16. Dupont LL, Bracke KR, De Maeyer JH, Compan V, Joos GF, Lefebvre RA et al (2014) Investigation of 5-HT 4 receptors in bronchial hyperresponsiveness in cigarette smoke-exposed mice. Pulm Pharmacol Ther 28(1):60–67CrossRefPubMedGoogle Scholar
  17. El Nehir S, Karakaya S (2004) Radical scavenging and iron-chelating activities of some greens used as traditional dishes in Mediterranean diet. Int J Food Sci Nutr 55(1):67–74CrossRefGoogle Scholar
  18. Eskandari MK, Bolgos G, Miller C, Nguyen DT, DeForge LE, Remick DG (1992) Anti-tumor necrosis factor antibody therapy fails to prevent lethality after cecal ligation and puncture or endotoxemia. J Immunol 148(9):2724–2730PubMedGoogle Scholar
  19. Evans GF, Snyder YM, Butler LD, Zuckerman SH (1989) Differential expression of interleukin-1 and tumor necrosis factor in murine septic shock models. Circ Shock 29(4):279–290PubMedGoogle Scholar
  20. Hernekamp JF, Hu S, Schmidt K, Walther A, Kneser U, Kremer T (2013) Cinanserin reduces plasma extravasation after burn plasma transfer in rats. Burns J Int Soc Burn Inj 39(6):1226–1233CrossRefGoogle Scholar
  21. Kang Q, Chen Y, Zhang X, Yu G, Wan X, Wang J et al (2015) Heat shock protein A12B protects against sepsis-induced impairment in vascular endothelial permeability. J Surg Res 202(1):87–94CrossRefPubMedGoogle Scholar
  22. Kürkçü E (2008) Deneysel olarak oluşturulmuş meme tümörlerinde curcumin’in arginaz enzim aktivitesi, ornitin ve nitrik oksit düzeylerine etkisiGoogle Scholar
  23. Kuşcuoğlu U (2004) Deneysel omurilik yaralanmasında agmatin’in doza bağlı nöroprotektif etkilerinin incelenmesi. İstanbulGoogle Scholar
  24. Kuyumcu A, Düzgün AP, Özmen MM, Besler HT (2004) Travma ve enfeksiyonda nitrik oksidin rolü. Turk J Trauma Emerg Surg 10(3):149–159Google Scholar
  25. Leon-Ponte M, Ahern GP, O’Connell PJ (2007) Serotonin provides an accessory signal to enhance T-cell activation by signaling through the 5-HT7 receptor. Blood 109(8):3139–3146CrossRefPubMedPubMedCentralGoogle Scholar
  26. Leopoldo M, Lacivita E, Berardi F, Perrone R, Hedlund PB (2011) Serotonin 5-HT7 receptor agents: structure-activity relationships and potential therapeutic applications in central nervous system disorders. Pharmacol Ther 129(2):120–148CrossRefPubMedPubMedCentralGoogle Scholar
  27. Lepoivre M, Fieschi F, Coves J, Thelander L, Fontecave M (1991) Inactivation of ribonucleotide reductase by nitric oxide. Biochem Biophys Res Commun 179(1):442–448CrossRefPubMedGoogle Scholar
  28. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T)) method. Methods 25(4):402–408CrossRefPubMedGoogle Scholar
  29. Livermore S, Zhou Y, Pan J, Yeger H, Nurse CA, Cutz E (2015) Pulmonary neuroepithelial bodies are polymodal airway sensors: evidence for CO2/H+ sensing. Am J Physiol Lung Cell Mol Physiol 308(8):L807–L815CrossRefPubMedGoogle Scholar
  30. Maleki-Dizaji N, Eteraf-Oskouei T, Fakhrjou A, Maljaie SH, Garjani A (2010) The effects of 5HT3 receptor antagonist granisetron on inflammatory parameters and angiogenesis in the air-pouch model of inflammation. Int Immunopharmacol 10(9):1010–1016CrossRefPubMedGoogle Scholar
  31. Mossner R, Lesch KP (1998) Role of serotonin in the immune system and in neuroimmune interactions. Brain Behav Immun 12(4):249–271CrossRefPubMedGoogle Scholar
  32. Nilsson T, Longmore J, Shaw D, Pantev E, Bard JA, Branchek T et al (1999) Characterisation of 5-HT receptors in human coronary arteries by molecular and pharmacological techniques. Eur J Pharmacol 372(1):49–56CrossRefPubMedGoogle Scholar
  33. Nishiyama T (2009) Acute effects of sarpogrelate, a 5-HT2A receptor antagonist on cytokine production in endotoxin shock model of rats. Eur J Pharmacol 614(1–3):122–127CrossRefPubMedGoogle Scholar
  34. Özkan C, Akgül Y (2010) Deneysel Nefrotoksisite Oluşturulan Tavşanlarda Nitrik Oksit Donörü (L-Arginin) ve Nitrik Oksit Sentaz İnhibitörlerinin (Aminoguanidin, L-NAME) Bazı Biyokimyasal Parametrelere Etkileri. Yüzüncü Yıl Üniversitesi Veteriner Fakültesi Dergisi 21(1):35–41Google Scholar
  35. Reinhart K, Daniels R, Kissoon N, O’Brien J, Machado FR, Jimenez E (2013) The burden of sepsis-a call to action in support of World Sepsis Day 2013. J Crit Care 28(4):526–528CrossRefPubMedGoogle Scholar
  36. Ruggieri AJ, Levy RJ, Deutschman CS (2010) Mitochondrial dysfunction and resuscitation in sepsis. Crit Care Clin 26(3):567–575CrossRefPubMedPubMedCentralGoogle Scholar
  37. Schabbauer G (2012) Polymicrobial sepsis models: CLP versus CASP. Drug Discov Today Dis Models 9(1):e17–e21CrossRefGoogle Scholar
  38. Segura P, Vargas M, Córdoba-Rodríguez G, Chávez J, Arreola J, Campos-Bedolla P et al (2010) Role of 5-HT2A, 5-HT4 and 5-HT7 receptors in the antigen-induced airway hyperresponsiveness in guinea-pigs. Clin Exp Allergy 40(2):327–338CrossRefPubMedGoogle Scholar
  39. Shishodia S, Aggarwal BB (2004) Nuclear factor-κB: a friend or a foe in cancer? Biochem Pharmacol 68(6):1071–1080CrossRefPubMedGoogle Scholar
  40. Tizard IR (2004) Veterinary immunology: an introduction, 7th edn. Saunders, Readfield, pp 293–299Google Scholar
  41. Tosi MF (2005) Innate immune responses to infection. J Allergy Clin Immunol 116(2):241–249CrossRefPubMedGoogle Scholar
  42. Türköz YÖE (1997) Nitrik oksit’in etkileri ve patolojik rolleriGoogle Scholar
  43. Ullmer C, Schmuck K, Kalkman HO, Lubbert H (1995) Expression of serotonin receptor mRNAs in blood vessels. FEBS Lett 370(3):215–221CrossRefPubMedGoogle Scholar
  44. Waddick KG, Uckun FM (1999) Innovative treatment programs against cancer: II. Nuclear factor-kappaB (NF-kappaB) as a molecular target. Biochem Pharmacol 57(1):9–17CrossRefPubMedGoogle Scholar
  45. Yang GB, Qiu CL, Zhao H, Liu Q, Shao Y (2006) Expression of mRNA for multiple serotonin (5-HT) receptor types/subtypes by the peripheral blood mononuclear cells of rhesus macaques. J Neuroimmunol 178(1–2):24–29CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Gulsen Ayaz
    • 1
  • Zekai Halici
    • 1
  • Abdulmecit Albayrak
    • 1
    Email author
  • Emre Karakus
    • 2
  • Elif Cadirci
    • 1
  1. 1.Department of Pharmacology, Faculty of MedicineAtaturk UniversityErzurumTurkey
  2. 2.Department of Pharmacology and Toxicology, Faculty of Veterinary MedicineAtaturk UniversityErzurumTurkey

Personalised recommendations