Biochemical Genetics

, Volume 54, Issue 6, pp 753–768 | Cite as

The Use of Redox Expression and Associated Molecular Damage to Evaluate the Inflammatory Response in Critically Ill Patient with Severe Burn

  • Lavinia Melania Bratu
  • Alexandru Florin Rogobete
  • Dorel Sandesc
  • Ovidiu Horea Bedreag
  • Sonia Tanasescu
  • Razvan Nitu
  • Sonia Elena Popovici
  • Zorin Petrisor Crainiceanu
Review

Abstract

The patient with severe burns always represents a challenge for the trauma team due to the severe biochemical and physiopathological disorders. Although there are many resuscitation protocols of severe burn patient, systemic inflammatory response, oxidative stress, decreased immune response, infections, and multiple organ dysfunction syndromes are still secondary complications of trauma, present at maximum intensity in this type of patients. Currently there are numerous studies regarding the evaluation, monitoring, and minimizing the side effects induced by free radicals through antioxidant therapy. In this study, we want to introduce biochemical and physiological aspects of oxidative stress in patients with severe burns and to summarize the biomarkers used presently in the intensive care units. Systemic inflammations and infections are according to the literature the most important causes of death in these type of patients, being directly involved in multiple organ dysfunction syndrome and death.

Keywords

Oxidative stress Severe burns microRNAs Molecular damage Antioxidants 

Abbreviations

SIRS

Systemic inflammatory response syndrome

MODS

Multiple organ dysfunction syndrome

ARDS

Acute respiratory distress syndrome

AKI

Acute kidney injury

FR

Free radicals

OS

Oxidative stress

ICU

Intensive care unit

MDA

Malondialdehyde

4-HNE

4-Hydroxy-2-nonenal

DNA

Deoxyribonucleic acid

RNA

Ribonucleic acid

SOD

Superoxide dismutase

CAT

Catalase

GSH

Glutathione

GRXs

Glutaredoxins

PRXs

Peroxiredoxins

NAD(P)H

Nicotinamide adenine dinucleotide phosphate oxidases

ROS

Oxygen reactive species

IL-1

Interleukin 1

IL-2

Interleukin 2

IL-6

Interleukin 6

IL-8

Interleukin 8

IL-12

Interleukin 12

IL-17

Interleukin 17

IL-23

Interleukin 23

TNF-alpha

Tumor necrosis alpha

CRP

C-reactive protein

PCT

Procalcitonin

C3a, C5a

Complement components

NT-CNP

N-terminal natriuretic peptide

microRNAs

MicroRNA species

NF-k B

Nuclear transcription factor-k B

Sirt1

Sirtuin 1

iNOS

Inducible nitric oxide synthase

References

  1. Abdul-Muneer PM, Schuetz H, Wang F et al (2013) Induction of oxidative and nitrosative damage leads to cerebrovascular inflammation in an animal model of mild traumatic brain injury induced by primary blast. Free Radic Biol Med 60:282–291. doi:10.1016/j.freeradbiomed.2013.02.029 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Abdul-Muneer PM, Chandra N, Haorah J (2015) Interactions of oxidative stress and neurovascular inflammation in the pathogenesis of traumatic brain injury. Mol Neurobiol 51:966–979. doi:10.1007/s12035-014-8752-3 CrossRefPubMedGoogle Scholar
  3. Alencar de Castro RJ, Leal PC, Sakata RK (2013) Pain management in burn patients. Rev Bras Anestesiol 63:149–158. doi:10.1016/S0034-7094(13)70206-X CrossRefGoogle Scholar
  4. Al-jawad FH, Ph D, Sahib AS et al (2011) Effect of N-acetylcysteine on wound healing in burned patients. Mustansiyria Med J 10:28–31Google Scholar
  5. Andruszkow H, Fischer J (2014) Interleukin-6 as inflammatory marker referring to multiple organ dysfunction syndrome in severely injured children. Scand J Trauma Resusc Emerg Med 22:16. doi:10.1186/1757-7241-22-16 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Ansari MA, Roberts KN, Scheff SW (2008) Oxidative stress and modification of synaptic proteins in hippocampus after traumatic brain injury. Free Radic Biol Med 45:443–452. doi:10.1016/j.freeradbiomed.2008.04.038 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Arlati S, Storti E, Pradella V et al (2007) Decreased fluid volume to reduce organ damage: a new approach to burn shock resuscitation? A preliminary study. Resuscitation 72:371–378. doi:10.1016/j.resuscitation.2006.07.010 CrossRefPubMedGoogle Scholar
  8. Aschauer S, Gouya G, Klickovic U et al (2014) Effect of systemic high dose vitamin C therapy on forearm blood flow reactivity during endotoxemia in healthy human subjects. Vasc Pharmacol 61:25–29. doi:10.1016/j.vph.2014.01.007 CrossRefGoogle Scholar
  9. Belîi N, Moghildea V, Şandru S et al (2014) Anxiety, but not pain catastrophizing, represents a risk factor for severe acute postoperative pain: a prospective, observational, cohort study. J Rom Anest Terap Int 21:19–26Google Scholar
  10. Berger MM, Pichard C (2014) Development and current use of parenteral nutrition in critical care—an opinion paper. Crit Care 18:478. doi:10.1186/s13054-014-0478-0 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Biesalski HK, McGregor GP (2007) Antioxidant therapy in critical care—is the microcirculation the primary target? Crit Care Med 35:S577–S583. doi:10.1097/01.CCM.0000278598.95294.C5 CrossRefPubMedGoogle Scholar
  12. Burkhardt M, Nienaber U, Pizanis A et al (2012) Acute management and outcome of multiple trauma patients with pelvic disruptions. Crit Care 16:R163. doi:10.1186/cc11487 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Carnes CA, Chung MK, Nakayama T et al (2001) Ascorbate attenuates atrial pacing-induced peroxynitrite formation and electrical remodeling and decreases the incidence of postoperative atrial fibrillation. Circ Res 89:E32–E38CrossRefPubMedGoogle Scholar
  14. Chaturvedi RK, Beal MF (2013) Mitochondrial diseases of the brain. Free Radic Biol Med 63:1–29. doi:10.1016/j.freeradbiomed.2013.03.018 CrossRefPubMedGoogle Scholar
  15. Chuang T-Y, Chang H-T, Chung K-P et al (2014) High levels of serum macrophage migration inhibitory factor and interleukin 10 are associated with a rapidly fatal outcome in patients with severe sepsis. Int J Infect Dis 20:13–17. doi:10.1016/j.ijid.2013.12.006 CrossRefPubMedGoogle Scholar
  16. Coelho FR, Martins JO (2012) Diagnostic methods in sepsis: the need of speed. Rev Assoc Med Bras 58:498–504. doi:10.1590/S0104-42302012000400024 CrossRefPubMedGoogle Scholar
  17. Collier BR, Giladi A, Dossett LA et al (2008) Impact of high-dose antioxidants on outcomes in acutely injured patients. J Parenter Enter Nutr 32:384–388CrossRefGoogle Scholar
  18. Comar JF, Babeto De Sá-Nakanishi A, De Oliveira AL et al (2013) Oxidative state of the liver of rats with adjuvant-induced arthritis. Free Radic Biol Med 58:144–153. doi:10.1016/j.freeradbiomed.2012.12.003 CrossRefPubMedGoogle Scholar
  19. Courts C, Madea B (2010) Micro-RNA—a potential for forensic science? Forensic Sci Int 203:106–111. doi:10.1016/j.forsciint.2010.07.002 CrossRefPubMedGoogle Scholar
  20. Csontos C, Rezman B, Foldi V et al (2012) Effect of N-acetylcysteine treatment on oxidative stress and inflammation after severe burn. Burns 38:428–437. doi:10.1016/j.burns.2011.09.011 CrossRefPubMedGoogle Scholar
  21. Dal-Pizzol F, Ritter C, Cassol-Jr OJ et al (2010) Oxidative mechanisms of brain dysfunction during sepsis. Neurochem Res 35:1–12. doi:10.1007/s11064-009-0043-4 CrossRefPubMedGoogle Scholar
  22. Ding X, Ding J, Ning J et al (2012) Circulating microRNA-122 as a potential biomarker for liver injury. Mol Med Rep 5:1428–1432. doi:10.3892/mmr.2012.838 PubMedGoogle Scholar
  23. Douzinas EE, Betrosian A, Giamarellos-Bourboulis EJ et al (2011) Hypoxemic resuscitation from hemorrhagic shock prevents lung injury and attenuates oxidative response and IL-8 overexpression. Free Radic Biol Med 50:245–253. doi:10.1016/j.freeradbiomed.2010.10.712 CrossRefPubMedGoogle Scholar
  24. Dubick MA, Williams C, Elgjo GI, Kramer GC (2005) High-dose vitamin c infusion reduces fluid requirements in the resuscitation of burn-injured sheep. Shock 24:139–144CrossRefPubMedGoogle Scholar
  25. Duchesne JC, Kaplan LJ, Balogh ZJ et al (2015) Role of permissive hypotension, hypertonic resuscitation and the global increased permeability syndrome in patients with severe haemorrhage: adjuncts to damage control resuscitation to prevent intra-abdominal hypertension. Anaesthesiol Intensive Ther 47:143–155CrossRefPubMedGoogle Scholar
  26. Elkharaz J, Ugun-Klusek A, Constantin-Teodosiu D et al (2013) Implications for oxidative stress and astrocytes following 26S proteasomal depletion in mouse forebrain neurones. Biochim Biophys Acta 1832:1959–1968. doi:10.1016/j.bbadis.2013.07.002 CrossRefGoogle Scholar
  27. Erbaş O, Taşkiran D (2014) Sepsis-induced changes in behavioral stereotypy in rats; involvement of tumor necrosis factor-alpha, oxidative stress, and dopamine turnover. J Surg Res 186:262–268. doi:10.1016/j.jss.2013.08.001 CrossRefPubMedGoogle Scholar
  28. Farina J, Rosique MJ, Rosique RG (2013) Curbing inflammation in burn patients. Int J Inflam 2013:715645. doi:10.1155/2013/715645 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Ferguson S, Mouzon B, Kayihan G et al (2010) Apolipoprotein E genotype and oxidative stress response to traumatic brain injury. Neuroscience 168:811–819. doi:10.1016/j.neuroscience.2010.01.031 CrossRefPubMedGoogle Scholar
  30. Fox ED, Heffernan DS, Cioffi WG, Reichner JS (2013) Neutrophils from critically ill septic patients mediate profound loss of endothelial barrier integrity. Crit Care 17:R226. doi:10.1186/cc13049 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Gerbaud P, Petzold L, Thérond P et al (2005) Differential regulation of Cu, Zn- and Mn-superoxide dismutases by retinoic acid in normal and psoriatic human fibroblasts. J Autoimmun 24:69–78. doi:10.1016/j.jaut.2004.10.003 CrossRefPubMedGoogle Scholar
  32. Hall KL, Shahrokhi S, Jeschke MG (2012) Enteral nutrition support in burn care: a review of current recommendations as instituted in the ross tilley burn centre. Nutrients 4:1554–1565. doi:10.1155/2012/539426 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Halliwell B (2007) Biochemistry of oxidative stress. Biochem Soc Trans 35:1147–1150. doi:10.1042/BST0351147 CrossRefPubMedGoogle Scholar
  34. Han T-H, Lee S-Y, Kwon J-E et al (2004) The limited immunomodulatory effects of escharectomy on the kinetics of endotoxin, cytokines, and adhesion molecules in major burns. Mediators Inflamm 13:241–246. doi:10.1080/09629350400003191 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Heyland DK, Dhaliwal R, Suchner U, Berger MM (2005) Antioxidant nutrients: a systematic review of trace elements and vitamins in the critically ill patient. Intensive Care Med 31:327–337. doi:10.1007/s00134-004-2522-z CrossRefPubMedGoogle Scholar
  36. Homsi S, Federico F, Croci N et al (2009) Minocycline effects on cerebral edema: relations with inflammatory and oxidative stress markers following traumatic brain injury in mice. Brain Res 1291:122–132. doi:10.1016/j.brainres.2009.07.031 CrossRefPubMedGoogle Scholar
  37. Horton JW (2003) Free radicals and lipid peroxidation mediated injury in burn trauma: the role of antioxidant therapy. Toxicology 189:75–88. doi:10.1016/S0300-483X(03)00154-9 CrossRefPubMedGoogle Scholar
  38. Hsu C-C, Wang J-J (2015) l-Ascorbic acid and alpha-tocopherol attenuates liver ischemia-reperfusion induced of cardiac function impairment. Transplant Proc 44:933–936. doi:10.1016/j.transproceed.2012.01.098 CrossRefGoogle Scholar
  39. Hu D, Yu Y, Wang C et al (2015) microRNA-98 mediated microvascular hyperpermeability during burn shock phase via inhibiting FIH-1. Eur J Med Res 20:1–10. doi:10.1186/s40001-015-0141-5 CrossRefGoogle Scholar
  40. Huang J, Sun Z, Yan W et al (2014) Identification of MicroRNA as sepsis biomarker based on miRNAs regulatory network analysis. Biomed Res Int 2014:594350. doi:10.1155/2014/594350 PubMedPubMedCentralGoogle Scholar
  41. Kodahl AR, Lyng MB, Binder H et al (2014) Novel circulating microRNA signature as a potential non-invasive multi-marker test in ER-positive early-stage breast cancer: a case control study. Mol Oncol 8:874–883. doi:10.1016/j.molonc.2014.03.002 CrossRefPubMedGoogle Scholar
  42. Kumar RG, Diamond ML, Boles JA et al (2014) Acute CSF interleukin-6 trajectories after TBI: associations with neuroinflammation, polytrauma, and outcome. Brain Behav Immun 45:253–262. doi:10.1016/j.bbi.2014.12.021 CrossRefPubMedGoogle Scholar
  43. Lagouge M, Argmann C, Gerhart-Hines Z et al (2006) Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1α. Cell 127:1109–1122. doi:10.1016/j.cell.2006.11.013 CrossRefPubMedGoogle Scholar
  44. Lazarus RC, Buonora JE, Jacobowitz DM, Mueller GP (2015) Free radical biology and medicine protein carbonylation after traumatic brain injury: cell speci fi city, regional susceptibility, and gender differences. Free Radic Biol Med 78:89–100. doi:10.1016/j.freeradbiomed.2014.10.507 CrossRefPubMedGoogle Scholar
  45. Lazzarino G, Di Pietro V, Lazzarino G et al (2014) Neuroglobin expression and oxidant/antioxidant balance after graded traumatic brain injury in the rat. Free Radic Biol Med 69:258–264. doi:10.1016/j.freeradbiomed.2014.01.032 CrossRefPubMedGoogle Scholar
  46. Le Lay S, Simard G, Martinez MC, Andriantsitohaina R (2014) Oxidative stress and metabolic pathologies: from an adipocentric point of view. Oxid Med Cell Longev 2014:908539. doi:10.1155/2014/908539 PubMedPubMedCentralGoogle Scholar
  47. Leipnitz G, Amaral AU, Fernandes CG et al (2011) Pristanic acid promotes oxidative stress in brain cortex of young rats: a possible pathophysiological mechanism for brain damage in peroxisomal disorders. Brain Res 1382:259–265. doi:10.1016/j.brainres.2011.01.014 CrossRefPubMedGoogle Scholar
  48. Li T, Zhang J, Feng J et al (2013) Resveratrol reduces acute lung injury in a LPS-induced sepsis mouse model via activation of Sirt1. Mol Med Rep 7:1889–1895. doi:10.3892/mmr.2013.1444 PubMedGoogle Scholar
  49. Liberati A, Moja L, Moschetti I et al (2006) Human albumin solution for resuscitation and volume expansion in critically ill patients. Intern Emerg Med 1:243–245. doi:10.1007/BF02934748 CrossRefPubMedGoogle Scholar
  50. Lindahl AE, Low A, Stridsberg M et al (2013) Plasma chromogranin A after severe burn trauma. Neuropeptides 47:207–212. doi:10.1016/j.npep.2012.10.004 CrossRefPubMedGoogle Scholar
  51. Lira A, Pinsky MR (2014) Choices in fluid type and volume during resuscitation: impact on patient outcomes. Ann Intensive Care 4:38. doi:10.1186/s13613-014-0038-4 CrossRefPubMedPubMedCentralGoogle Scholar
  52. Liu T, Fei Z, Gangavarapu KJ et al (2013) Interleukin-6 and JAK2/STAT3 signaling mediate the reversion of dexamethasone resistance after dexamethasone withdrawal in 7TD1 multiple myeloma cells. Leuk Res 37:1322–1328. doi:10.1016/j.leukres.2013.06.026 CrossRefPubMedPubMedCentralGoogle Scholar
  53. Lloberas N, Torras J, Herrero-Fresneda I et al (2002) Postischemic renal oxidative stress induces inflammatory response through PAF and oxidized phospholipids. Prevention by antioxidant treatment. FASEB J 16:908–910. doi:10.1096/fj.01-0880fje PubMedGoogle Scholar
  54. Marín-Prida J, Pentón-Rol G, Rodrigues FP et al (2012) C-Phycocyanin protects SH-SY5Y cells from oxidative injury, rat retina from transient ischemia and rat brain mitochondria from Ca2+/phosphate-induced impairment. Brain Res Bull 89:159–167. doi:10.1016/j.brainresbull.2012.08.011 CrossRefPubMedGoogle Scholar
  55. McClure C, Brudecki L, Ferguson DA et al (2014) MicroRNA 21 (miR-21) and miR-181b couple with NFI-A to generate myeloid-derived suppressor cells and promote immunosuppression in late sepsis. Infect Immun 82:3816–3825. doi:10.1128/IAI.01495-14 CrossRefPubMedPubMedCentralGoogle Scholar
  56. McLean MH, El-Omar EM (2009) Genetic aspects of inflammation. Curr Opin Pharmacol 9:370–374. doi:10.1016/j.coph.2009.06.003 CrossRefPubMedGoogle Scholar
  57. Mica L, Vomela J, Keel M, Trentz O (2014) The impact of body mass index on the development of systemic inflammatory response syndrome and sepsis in patients with polytrauma. Injury 45:253–258. doi:10.1016/j.injury.2012.11.015 CrossRefPubMedGoogle Scholar
  58. Mierzewska-Schmidt M (2015) Intraoperative fluid management in children—a comparison of three fluid regimens. Anaesthesiol Intensive Ther 47:125–130CrossRefPubMedGoogle Scholar
  59. Miller A-F (2012) Superoxide dismutases: ancient enzymes and new insights. FEBS Lett 586:585–595. doi:10.1016/j.febslet.2011.10.048 CrossRefPubMedGoogle Scholar
  60. Moore CC, McKillop IH, Huynh T (2012) MicroRNA expression following activated protein C treatment during septic shock. J Surg Res 182:116–126. doi:10.1016/j.jss.2012.07.063 CrossRefPubMedGoogle Scholar
  61. Mühl D, Woth G, Drenkovics L et al (2011) Comparison of oxidative stress and leukocyte activation in patients with severe sepsis and burn injury. Indian J Med Res 134:69–78PubMedPubMedCentralGoogle Scholar
  62. Najafi A, Mojtahedzadeh M, Ahmadi K et al (2014) The immunological benefit of higher dose N-acetyl cysteine following mechanical ventilation in critically ill patients. DARU J Pharm Sci 22:57. doi:10.1186/2008-2231-22-57 CrossRefGoogle Scholar
  63. Nathens AB, Neff MJ, Jurkovich GJ et al (2002) Randomized, prospective trial of antioxidant supplementation in critically ill surgical patients. Ann Surg 236:814–822. doi:10.1097/00000658-200212000-00014 CrossRefPubMedPubMedCentralGoogle Scholar
  64. Oudemans-van Straaten HM, Man A, de Waard MC (2014) Vitamin C revisited. Crit Care 18:460. doi:10.1186/s13054-014-0460-x CrossRefPubMedPubMedCentralGoogle Scholar
  65. Piatkowski A, Grieb G, Das R et al (2011) Soluble CD163: a novel biomarker for the susceptibility to sepsis in severe burn injuries. Indian J Plast Surg 44:118–124. doi:10.4103/0970-0358.81454 CrossRefPubMedPubMedCentralGoogle Scholar
  66. Pilon M, Ravet K, Tapken W (2011) The biogenesis and physiological function of chloroplast superoxide dismutases. Biochim Biophys Acta 1807:989–998. doi:10.1016/j.bbabio.2010.11.002 CrossRefPubMedGoogle Scholar
  67. Preiser J-C, van Zanten AR, Berger MM et al (2015) Metabolic and nutritional support of critically ill patients: consensus and controversies. Crit Care 19:1–11. doi:10.1186/s13054-015-0737-8 CrossRefGoogle Scholar
  68. Quoilin C, Mouithys-Mickalad A, Lécart S et al (2014) Evidence of oxidative stress and mitochondrial respiratory chain dysfunction in an in vitro model of sepsis-induced kidney injury. Biochim Biophys Acta 1837:1790–1800. doi:10.1016/j.bbabio.2014.07.005 CrossRefPubMedGoogle Scholar
  69. Rahal A, Kumar A, Singh V et al (2014) Oxidative stress, prooxidants, and antioxidants: the interplay. Biomed Res Int 2014:761264. doi:10.1155/2014/761264 CrossRefPubMedPubMedCentralGoogle Scholar
  70. Rahman I, Adcock IM (2006) Oxidative stress and redox regulation of lung inflammation in COPD. Eur Respir J 28:219–242. doi:10.1183/09031936.06.00053805 CrossRefPubMedGoogle Scholar
  71. Ramos SF, Mendonça BP, Leffa DD et al (2012) Effects of neuropeptide S on seizures and oxidative damage induced by pentylenetetrazole in mice. Pharmacol Biochem Behav 103:197–203. doi:10.1016/j.pbb.2012.09.001 CrossRefPubMedGoogle Scholar
  72. Rao S, Sireesha K, Aparna Y, Sadanandam M (2011) Free radicals and tissue damage: role of antioxidants. Free Radicals Antioxidants 1:2–7. doi:10.5530/ax.2011.4.2 Google Scholar
  73. Rittirsch D, Redl H, Huber-Lang M (2012) Role of complement in multiorgan failure. Clin Dev Immunol. doi:10.1155/2012/962927 PubMedPubMedCentralGoogle Scholar
  74. Rosanova MT, Stamboulian D, Lede R (2014) Risk factors for mortality in burn children. Brazilian J Infect Dis 18:144–149. doi:10.1016/j.bjid.2013.08.004 CrossRefGoogle Scholar
  75. Rosenfeldt F, Wilson M, Lee G et al (2013) Oxidative stress in surgery in an ageing population: pathophysiology and therapy. Exp Gerontol 48:45–54. doi:10.1016/j.exger.2012.03.010 CrossRefPubMedGoogle Scholar
  76. Sakr Y, Maia VP, Santos C et al (2014) Adjuvant selenium supplementation in the form of sodium selenite in postoperative critically ill patients with severe sepsis. Crit Care 18:R68. doi:10.1186/cc13825 CrossRefPubMedPubMedCentralGoogle Scholar
  77. Scheibmeir HD, Christensen K, Whitaker SH et al (2005) A review of free radicals and antioxidants for critical care nurses. Intensive Crit Care Nurs 21:24–28. doi:10.1016/j.iccn.2004.07.007 CrossRefPubMedGoogle Scholar
  78. Seo MY, Lee SM (2015) Protective effect of low dose of ascorbic acid on hepatobiliary function in hepatic ischemia/reperfusion in rats. J Hepatol 36:72–77. doi:10.1016/S0168-8278(01)00236-7 CrossRefGoogle Scholar
  79. Starega-Roslan J, Krol J, Koscianska E et al (2011) Structural basis of microRNA length variety. Nucleic Acids Res 39:257–268. doi:10.1093/nar/gkq727 CrossRefPubMedGoogle Scholar
  80. Tacke F, Roderburg C, Benz F et al (2014) Levels of circulating miR-133a are elevated in sepsis and predict mortality in critically ill patients. Crit Care Med 42:1096–1104CrossRefPubMedGoogle Scholar
  81. Tanaka H, Matsuda T, Miyagantani Y et al (2000) Reduction of resuscitation fluid volumes in severely burned patients using ascorbic acid administration: a randomized, prospective study. Arch Surg 135:326–331CrossRefPubMedGoogle Scholar
  82. Tompkins RG, Hospital MG (2015) Survival from burns in the new millennium: 70 years experience from a single institution. Ann Surg 261:263–268CrossRefPubMedPubMedCentralGoogle Scholar
  83. Trancă SD, Laura C, Hagă N (2014) Biomarkers in polytrauma induced systemic inflammatory response syndrome and sepsis—a narrative review. J Rom Anesth Terap Int 21:118–122Google Scholar
  84. Tsakiridis K, Mpakas A, Kesisis G et al (2014) Lung inflammatory response syndrome after cardiac-operations and treatment of lornoxicam. J Thorac Dis 6:S78–S98. doi:10.3978/j.issn.2072-1439.2013.12.07 PubMedPubMedCentralGoogle Scholar
  85. Vasilescu C, Rossi S, Shimizu M et al (2009) MicroRNA fingerprints identify miR-150 as a plasma prognostic marker in patients with sepsis. PLoS One. doi:10.1371/journal.pone.0007405 PubMedPubMedCentralGoogle Scholar
  86. Vf E, Kosoko A, Sb A et al (2012) Plasma antioxidant enzymes, lipid peroxidation and hydrogen peroxide in wistar rats exposed to dichlorvos insecticide. Arch Appl Sci Res 4:1778–1781Google Scholar
  87. Vinha PP, Martinez EZ, Vannucchi H et al (2013) Effect of acute thermal injury in status of serum vitamins, inflammatory markers, and oxidative stress markers: preliminary data. J Burn Care Res 34(2):e87–e91CrossRefPubMedGoogle Scholar
  88. Wang Z, Holthoff JH, Seely KA et al (2012) Development of oxidative stress in the peritubular capillary microenvironment mediates sepsis-induced renal microcirculatory failure and acute kidney injury. Am J Pathol 180:505–516. doi:10.1016/j.ajpath.2011.10.011 CrossRefPubMedPubMedCentralGoogle Scholar
  89. Wu F, Wilson JX, Tyml K (2003) Ascorbate inhibits iNOS expression and preserves vasoconstrictor responsiveness in skeletal muscle of septic mice. Am J Physiol Regul Integr Comp Physiol 285:R50–R56. doi:10.1152/ajpregu.00564.2002 CrossRefPubMedGoogle Scholar
  90. Xie LX (2013) New biomarkers for sepsis. Med J Chin People’s Lib Army 38:6–9Google Scholar
  91. Yazihan N, Uzuner K, Salman B et al (2008) Erythropoietin improves oxidative stress following spinal cord trauma in rats. Injury 39:1408–1413. doi:10.1016/j.injury.2008.03.010 CrossRefPubMedGoogle Scholar
  92. Zapatero-Solana E, García-Giménez JL, Guerrero-Aspizua S et al (2014) Oxidative stress and mitochondrial dysfunction in Kindler syndrome. Orphanet J Rare Dis 9:1–10. doi:10.1186/s13023-014-0211-8 CrossRefGoogle Scholar
  93. Zhao H, Tao Z, Wang R et al (2014) MicroRNA-23a-3p attenuates oxidative stress injury in a mouse model of focal cerebral. Brain Res 1592:65–72. doi:10.1016/j.brainres.2014.09.055 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Lavinia Melania Bratu
    • 1
  • Alexandru Florin Rogobete
    • 2
    • 3
  • Dorel Sandesc
    • 2
    • 3
  • Ovidiu Horea Bedreag
    • 2
    • 3
  • Sonia Tanasescu
    • 2
  • Razvan Nitu
    • 2
  • Sonia Elena Popovici
    • 2
  • Zorin Petrisor Crainiceanu
    • 2
  1. 1.Faculty of Pharmacy“Victor Babes” University of Medicine and PharmacyTimisoaraRomania
  2. 2.Faculty of Medicine“Victor Babes” University of Medicine and PharmacyTimisoaraRomania
  3. 3.Clinic of Aneshtesia and Intensive CareEmergency County Hospital “Pius Brinzeu”TimisoaraRomania

Personalised recommendations