Biochemical Genetics

, Volume 54, Issue 4, pp 506–533 | Cite as

Association Mapping in Turkish Olive Cultivars Revealed Significant Markers Related to Some Important Agronomic Traits

  • Hilal Betul Kaya
  • Oznur Cetin
  • Hulya Sozer Kaya
  • Mustafa Sahin
  • Filiz Sefer
  • Bahattin Tanyolac
Original Article

Abstract

Olive (Olea europaea L.) is one of the most important fruit trees especially in the Mediterranean countries due to high consumption of table olive and olive oil. In olive breeding, the phenotypic traits associated to fruit are the key factors that determine productivity. Association mapping has been used in some tree species and a lot of crop plant species, and here, we perform an initial effort to detect marker-trait associations in olive tree. In the current study, a total of 96 olive genotypes, including both oil and table olive genotypes from Turkish Olive GenBank Resources, were used to examine marker-trait associations. For olive genotyping, SNP, AFLP, and SSR marker data were selected from previously published study and association analysis was performed between these markers and 5 yield-related traits. Three different approaches were used to check for false-positive results in association tests, and association results obtained from these models were compared. Using the model utilizing both population structure and relative kinship, eleven associations were significant with FDR ≤ 0.05. The largest number of significant associations was detected for fruit weight and stone weight. Our results suggested that association mapping could be an effective approach for identifying marker-trait associations in olive genotypes, without the development of mapping populations. This study shows for the first time the use of association mapping for identifying molecular markers linked to important traits in olive tree.

Keywords

Association mapping Olive tree Linkage disequilibrium Agronomic traits 

Supplementary material

10528_2016_9738_MOESM1_ESM.pdf (95 kb)
Supplementary material 1 (PDF 94 kb)
10528_2016_9738_MOESM2_ESM.xlsx (355 kb)
Supplementary material 2 (XLSX 354 kb)
10528_2016_9738_MOESM3_ESM.pdf (248 kb)
Supplementary material 3 (PDF 247 kb)

References

  1. Aabidine AZE et al (2010) Construction of a genetic linkage map for the olive based on AFLP and SSR markers. Crop Sci 50:2291–2302CrossRefGoogle Scholar
  2. Abdurakhmonov IY, Abdukarimov A (2008) Application of association mapping to understanding the genetic diversity of plant germplasm resources. Int J Plant Genom. doi:10.1155/2008/574927 Google Scholar
  3. Aranzana MJ, Abbassi E-K, Howad W, Arús P (2010) Genetic variation, population structure and linkage disequilibrium in peach commercial varieties. BMC Genet 11:69PubMedPubMedCentralCrossRefGoogle Scholar
  4. Arumugasundaram S, Ghosh M, Veerasamy S, Ramasamy Y (2011) Species discrimination, population structure and linkage disequilibrium in Eucalyptus camaldulensis and Eucalyptus tereticornis using SSR markers. PLoS One 6:e28252PubMedPubMedCentralCrossRefGoogle Scholar
  5. Atienza S, de la Rosa R, León L, Martín A, Belaj A (2014) Identification of QTL for agronomic traits of importance for olive breeding. Mol Breed 34:1–13CrossRefGoogle Scholar
  6. Baldoni L, Angiolillo A, Pellegrini M, Mencuccini M (1997) A linkage genome map for olive as an important tool for marker-assisted selection. In: Third international symposium on olive growing, vol. 474, pp 111–116Google Scholar
  7. Barnaud A, Laucou V, This P, Lacombe T, Doligez A (2010) Linkage disequilibrium in wild French grapevine, Vitis vinifera L. subsp. silvestris. Heredity 104:431–437PubMedCrossRefGoogle Scholar
  8. Belaj A, León L, Satovic Z, de la Rosa R (2011) Variability of wild olives (Olea europaea subsp. europaea var. sylvestris) analyzed by agro-morphological traits and SSR markers. Sci Hortic 129:561–569CrossRefGoogle Scholar
  9. Belaj A et al (2012) Developing a core collection of olive (Olea europaea L.) based on molecular markers (DArTs, SSRs, SNPs) and agronomic traits. Tree Genet Genomes 8:365–378CrossRefGoogle Scholar
  10. Bendini A, Cerretani L, Carrasco-Pancorbo A, Gómez-Caravaca AM, Segura-Carretero A, Fernández-Gutiérrez A, Lercker G (2007) Phenolic molecules in virgin olive oils: a survey of their sensory properties, health effects, antioxidant activity and analytical methods. An overview of the last decade. Alessandra Mol 12:1679–1719CrossRefGoogle Scholar
  11. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B (Methodol) 57(1):289–300Google Scholar
  12. Besnard G, El Bakkali A, Francki M (2014) Sequence analysis of single-copy genes in two wild olive subspecies: nucleotide diversity and potential use for testing admixture. Genome 57:145–153PubMedCrossRefGoogle Scholar
  13. Boskou D (2006) Characteristics of the olive tree and olive fruit. Olive Oil Chem Technol 53:13–19Google Scholar
  14. Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES (2007) TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23:2633–2635PubMedCrossRefGoogle Scholar
  15. Breseghello F, Sorrells ME (2006a) Association analysis as a strategy for improvement of quantitative traits in plants. Crop Sci 46:1323–1330CrossRefGoogle Scholar
  16. Breseghello F, Sorrells ME (2006b) Association mapping of kernel size and milling quality in wheat (Triticum aestivum L.) cultivars. Genetics 172:1165–1177PubMedPubMedCentralCrossRefGoogle Scholar
  17. Cantini C, Cimato A, Sani G (1999) Morphological evaluation of olive germplasm present in Tuscany region. Euphytica 109:173–181CrossRefGoogle Scholar
  18. Cao K, Wang L, Zhu G, Fang W, Chen C, Luo J (2012) Genetic diversity, linkage disequilibrium, and association mapping analyses of peach (Prunus persica) landraces in China. Tree Genet Genomes 8:975–990CrossRefGoogle Scholar
  19. Chhatre VE, Byram TD, Neale DB, Wegrzyn JL, Krutovsky KV (2013) Genetic structure and association mapping of adaptive and selective traits in the east Texas loblolly pine (Pinus taeda L.) breeding populations. Tree Genet Genomes 9:1161–1178CrossRefGoogle Scholar
  20. Collard BC, Mackill DJ (2008) Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Philos Trans R Soc B 363:557–572CrossRefGoogle Scholar
  21. Covas M-I (2008) Bioactive effects of olive oil phenolic compounds in humans: reduction of heart disease factors and oxidative damage. Inflammopharmacology 16:216–218PubMedCrossRefGoogle Scholar
  22. Cubry P et al (2013) An initial assessment of linkage disequilibrium (LD) in coffee trees: LD patterns in groups of Coffea canephora Pierre using microsatellite analysis. BMC Genom 14:10CrossRefGoogle Scholar
  23. De la Rosa R et al (2003) A first linkage map of olive (Olea europaea L.) cultivars using RAPD, AFLP, RFLP and SSR markers. Theor Appl Genet 106:1273–1282PubMedGoogle Scholar
  24. Deschamps S, Llaca V, May GD (2012) Genotyping-by-sequencing in plants. Biology 1:460–483PubMedPubMedCentralCrossRefGoogle Scholar
  25. Dhanapal AP, Crisosto CH (2013) Association genetics of chilling injury susceptibility in peach (Prunus persica (L.) Batsch) across multiple years 3. Biotech 3:481–490Google Scholar
  26. Díez CM, Trujillo I, Barrio E, Belaj A, Barranco D, Rallo L (2011) Centennial olive trees as a reservoir of genetic diversity. Ann Bot 108:797–807PubMedPubMedCentralCrossRefGoogle Scholar
  27. Dominguez-Garcia MdC et al (2012) Development of DArT markers in olive (Olea europaea L.) and usefulness in variability studies and genome mapping. Sci Hortic 136:50–60CrossRefGoogle Scholar
  28. Eckert AJ et al (2009) Multilocus patterns of nucleotide diversity and divergence reveal positive selection at candidate genes related to cold hardiness in coastal Douglas fir (Pseudotsuga menziesii var. menziesii). Genetics 183:289–298PubMedPubMedCentralCrossRefGoogle Scholar
  29. Ehrenreich IM, Stafford PA, Purugganan MD (2007) The genetic architecture of shoot branching in Arabidopsis thaliana: a comparative assessment of candidate gene associations vs. quantitative trait locus mapping. Genetics 176:1223–1236PubMedPubMedCentralCrossRefGoogle Scholar
  30. El Bakkali A, Haouane H, Moukhli A, Costes E, Van Damme P, Khadari B (2013) Construction of core collections suitable for association mapping to optimize use of Mediterranean olive (Olea europaea L.) genetic resources. PLoS One 8:e61265PubMedPubMedCentralCrossRefGoogle Scholar
  31. El SN, Karakaya S (2009) Olive tree (Olea europaea) leaves: potential beneficial effects on human health. Nutr Rev 67:632–638PubMedCrossRefGoogle Scholar
  32. Emanuelli F et al (2013) Genetic diversity and population structure assessed by SSR and SNP markers in a large germplasm collection of grape. BMC Plant Biol 13:39PubMedPubMedCentralCrossRefGoogle Scholar
  33. Endelman JB (2011) Ridge regression and other kernels for genomic selection with R package rrBLUP The Plant. Genome 4:250–255Google Scholar
  34. FAOSTAT (2014) The statistical database (FAOSTAT). FAO, RomeGoogle Scholar
  35. Ferrão LFV et al (2014) The effects of encoding data in diversity studies and the applicability of the weighting index approach for data analysis from different molecular markers. Plant Syst Evol 300:1649–1661Google Scholar
  36. Flint-Garcia SA, Thornsberry JM, Buckler ES IV (2003) Structure of linkage disequilibrium in plants. Ann Rev Plant Biol 54:357–374CrossRefGoogle Scholar
  37. Flint-Garcia SA et al (2005) Maize association population: a high-resolution platform for quantitative trait locus dissection. Plant J 44:1054–1064PubMedCrossRefGoogle Scholar
  38. Furlotte NA, Eskin E (2015) Efficient multiple trait association and estimation of genetic correlation using the matrix-variate linear mixed-model. Genetics. doi:10.1534/genetics.114.171447 PubMedPubMedCentralGoogle Scholar
  39. Galeano CH et al (2012) Gene-based single nucleotide polymorphism markers for genetic and association mapping in common bean. BMC Genet 13:48PubMedPubMedCentralCrossRefGoogle Scholar
  40. Ganopoulos IV, Kazantzis K, Chatzicharisis I, Karayiannis I, Tsaftaris AS (2011) Genetic diversity, structure and fruit trait associations in Greek sweet cherry cultivars using microsatellite based (SSR/ISSR) and morpho-physiological markers. Euphytica 181:237–251CrossRefGoogle Scholar
  41. García-Villalba R, Larrosa M, Possemiers S, Tomás-Barberán F, Espín J (2013) Bioavailability of phenolics from an oleuropein-rich olive (Olea europaea) leaf extract and its acute effect on plasma antioxidant status: comparison between pre-and postmenopausal women. Eur J Nutr 53(4):1–13Google Scholar
  42. Garris AJ, McCOUCH SR, Kresovich S (2003) Population structure and its effect on haplotype diversity and linkage disequilibrium surrounding the xa5 locus of rice (Oryza sativa L.). Genetics 165:759–769PubMedPubMedCentralGoogle Scholar
  43. Gebhardt C, Valkonen JP (2001) Organization of genes controlling disease resistance in the potato genome. Annu Rev Phytopathol 39:79–102PubMedCrossRefGoogle Scholar
  44. Ghanbari R, Anwar F, Alkharfy KM, Gilani A-H, Saari N (2012) Valuable nutrients and functional bioactives in different parts of olive (Olea europaea L.)—a review. Int J Mol Sci 13:3291–3340PubMedPubMedCentralCrossRefGoogle Scholar
  45. Green P (2002) A revision of Olea L. (Oleaceae). Kew Bull 57:91–140CrossRefGoogle Scholar
  46. Gupta PK, Rustgi S, Kulwal PL (2005) Linkage disequilibrium and association studies in higher plants: present status and future prospects. Plant Mol Biol 57:461–485PubMedCrossRefGoogle Scholar
  47. Hannachi H, Breton C, Msallem M, Ben El Hadj S, El Gazzah M, Bervillé A (2008) Differences between native and introduced olive cultivars as revealed by morphology of drupes, oil composition and SSR polymorphisms: a case study in Tunisia. Sci Hortic 116:280–290CrossRefGoogle Scholar
  48. Haouane H et al (2011) Genetic structure and core collection of the World Olive Germplasm Bank of Marrakech: towards the optimised management and use of Mediterranean olive genetic resources. Genetica 139:1083–1094PubMedPubMedCentralCrossRefGoogle Scholar
  49. Hong EP, Park JW (2012) Sample size and statistical power calculation in genetic association studies. Genom Informatics 10:117–122CrossRefGoogle Scholar
  50. i Forcada CF, Oraguzie N, Reyes-Chin-Wo S, Espiau MT, i Martí AF (2015) Identification of genetic loci associated with quality traits in almond via association mapping. PloS One 10:e0127656CrossRefGoogle Scholar
  51. Ibtissem L, Mouna MA, Messaoud M (2014) Phenotypic diversity of some olive tree progenies issued from a Tunisian breeding program. Eur Sci J 10(6):292–313Google Scholar
  52. IOOC (2011) Methodology for the Characterization of Olive Varieties Madrid, Spain COI/OH/Doc. No 1Google Scholar
  53. Ipek A, Barut E, Gulen H, Ipek M (2012) Assessment of inter-and intra-cultivar variations in olive using SSR markers. Scientia Agricola 69:327–335CrossRefGoogle Scholar
  54. Iqbal MJ et al (2012) Population structure and linkage disequilibrium in Lupinus albus L. germplasm and its implication for association mapping. Theor Appl Genet 125:517–530PubMedCrossRefGoogle Scholar
  55. Isik N, Doğanlar S, Frary A (2011) Genetic diversity of Turkish olive varieties assessed by simple sequence repeat and sequence-related amplified polymorphism markers. Crop Sci 51:1646–1654CrossRefGoogle Scholar
  56. Jaiswal V, Mir R, Mohan A, Balyan H, Gupta P (2012) Association mapping for pre-harvest sprouting tolerance in common wheat (Triticum aestivum L.). Euphytica 188:89–102CrossRefGoogle Scholar
  57. Jannink J-L, Bink MC, Jansen RC (2001) Using complex plant pedigrees to map valuable genes. Trends Plant Sci 6:337–342PubMedCrossRefGoogle Scholar
  58. Kadkhodaei S et al (2011) Molecular tagging of agronomic traits using simple sequence repeats: Informative markers for almond (‘Prunus dulcis’) molecular breeding. Aust J Crop Sci 5:1199Google Scholar
  59. Kaya HB, Cetin O, Kaya H, Sahin M, Sefer F, Kahraman A, Tanyolac B (2013) SNP discovery by Illumina-based transcriptome sequencing of the olive and the genetic characterization of Turkish olive genotypes revealed by AFLP, SSR and SNP markers. PloS One 8:e73674PubMedPubMedCentralCrossRefGoogle Scholar
  60. Khadari B et al (2010) A genetic linkage map of olive based on amplified fragment length polymorphism, intersimple sequence repeat and simple sequence repeat markers. J Am Soc Hortic Sci 135:548–555Google Scholar
  61. Khadivi-Khub A (2014) Regression association analysis of fruit traits with molecular markers in cherries. Plant Syst Evol 300:1163–1173CrossRefGoogle Scholar
  62. Khan MA, Korban SS (2012) Association mapping in forest trees and fruit crops. J Exp Bot 105:447–456Google Scholar
  63. Kosman E, Leonard K (2005) Similarity coefficients for molecular markers in studies of genetic relationships between individuals for haploid, diploid, and polyploid species. Mol Ecol 14:415–424PubMedCrossRefGoogle Scholar
  64. Kraakman AT, Niks RE, Van den Berg PM, Stam P, Van Eeuwijk FA (2004) Linkage disequilibrium mapping of yield and yield stability in modern spring barley cultivars. Genetics 168:435–446PubMedPubMedCentralCrossRefGoogle Scholar
  65. Krill AM, Kirst M, Kochian LV, Buckler ES, Hoekenga OA (2010) Association and linkage analysis of aluminum tolerance genes in maize. PLoS One 5:e9958PubMedPubMedCentralCrossRefGoogle Scholar
  66. Krutovsky KV, Neale DB (2005) Nucleotide diversity and linkage disequilibrium in cold-hardiness-and wood quality-related candidate genes in Douglas fir. Genetics 171:2029–2041PubMedPubMedCentralCrossRefGoogle Scholar
  67. Kwon S-J et al (2008) QTL mapping of agronomic traits using an RIL population derived from a cross between temperate japonica cultivars in rice (Oryza sativa L.). Breed Sci 58:271–279CrossRefGoogle Scholar
  68. Laidò G, Marone D, Russo MA, Colecchia SA, Mastrangelo AM, De Vita P, Papa R (2014) Linkage disequilibrium and genome-wide association mapping in tetraploid wheat (Triticum turgidum L.). PLoS One 9:e95211PubMedPubMedCentralCrossRefGoogle Scholar
  69. Lander ES, Schork NJ (1994) Genetic dissection of complex traits Science 265:2037–2048PubMedGoogle Scholar
  70. Larsson SJ, Lipka AE, Buckler ES (2013) Lessons from dwarf8 on the strengths and weaknesses of structured association mapping. PLoS Genet 9:e1003246PubMedPubMedCentralCrossRefGoogle Scholar
  71. Lavee S, Haskal A, Avidan B (2012) The effect of planting distances and tree shape on yield and harvest efficiency of cv. Manzanillo table olives. Sci Hortic 142:166–173CrossRefGoogle Scholar
  72. León L, Martín LM, Rallo L (2004) Phenotypic correlations among agronomic traits in olive progenies. J Am Soc Hortic Sci 129:271–276Google Scholar
  73. León L, Beltrán G, Aguilera MP, Rallo L, Barranco D, De la Rosa R (2011) Oil composition of advanced selections from an olive breeding program. Eur J Lipid Sci Technol 113:870–875CrossRefGoogle Scholar
  74. Lepoittevin C, Harvengt L, Plomion C, Garnier-Géré P (2012) Association mapping for growth, straightness and wood chemistry traits in the Pinus pinaster Aquitaine breeding population. Tree Genet Genomes 8:113–126CrossRefGoogle Scholar
  75. Li Z, Mu P, Li C, Zhang H, Gao Y, Wang X (2005) QTL mapping of root traits in a doubled haploid population from a cross between upland and lowland japonica rice in three environments. Theor Appl Genet 110:1244–1252PubMedCrossRefGoogle Scholar
  76. Li Y, Haseneyer G, Schön C-C, Ankerst D, Korzun V, Wilde P, Bauer E (2011) High levels of nucleotide diversity and fast decline of linkage disequilibrium in rye (Secale cereale L.) genes involved in frost response. BMC Plant Biol 11:6PubMedPubMedCentralCrossRefGoogle Scholar
  77. Long Y, Zhang C, Meng J (2008) Challenges for QTL analysis in crops. Crop Sci Biotech 11:7–12Google Scholar
  78. Ma X, Ding Y, Zhou B, Guo W, Lv Y, Zhu X, Zhang T (2008) QTL mapping in A-genome diploid Asiatic cotton and their congruence analysis with AD-genome tetraploid cotton in genus Gossypium. J Genet Genomics 35:751–762PubMedCrossRefGoogle Scholar
  79. McKay SJ (2010) The genetic dissection of fruit texture traits in the apple cultivar Honeycrisp. University of Minnesota, MinneapolisGoogle Scholar
  80. Montilla-Bascón G et al. (2015) Genome-wide association study for crown rust (Puccinia coronata f. sp. avenae) and powdery mildew (Blumeria graminis f. sp. avenae) resistance in an oat (Avena sativa) collection of commercial varieties and landraces. Front Plant Sci 6Google Scholar
  81. Myles S, Peiffer J, Brown PJ, Ersoz ES, Zhang Z, Costich DE, Buckler ES (2009) Association mapping: critical considerations shift from genotyping to experimental design. Plant Cell 21:2194–2202PubMedPubMedCentralCrossRefGoogle Scholar
  82. Neale DB, Savolainen O (2004) Association genetics of complex traits in conifers. Trends Plant Sci 9:325–330PubMedCrossRefGoogle Scholar
  83. Nimmakayala P et al (2014) Linkage disequilibrium and population-structure analysis among Capsicum annuum L. cultivars for use in association mapping. Molecular Genetics and Genomics 289:1–9CrossRefGoogle Scholar
  84. Olukolu B (2010) The genetics of chilling requirements in apricot (Prunus armeniaca L.). Dissertation, Clemson UniversityGoogle Scholar
  85. Pace J, Gardner C, Romay C, Ganapathsybrumanian B, Lübberstedt T (2015) Genome-wide association analysis of seedling root development in maize (Zea mays L.). BMC Genom 16:47CrossRefGoogle Scholar
  86. Pasam RK, Sharma R, Malosetti M, van Eeuwijk FA, Haseneyer G, Kilian B, Graner A (2012) Genome-wide association studies for agronomical traits in a world wide spring barley collection. BMC Plant Biol 12:16PubMedPubMedCentralCrossRefGoogle Scholar
  87. Pereira JA et al (2006) Table olives from Portugal: phenolic compounds, antioxidant potential, and antimicrobial activity. J Agric Food Chem 54:8425–8431PubMedCrossRefGoogle Scholar
  88. Pozniak C, Clarke J, Clarke F (2012) Potential for detection of marker–trait associations in durum wheat using unbalanced, historical phenotypic datasets. Mol Breed 30:1537–1550CrossRefGoogle Scholar
  89. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure from multilocus genotype data. Genetics 155:945–959PubMedPubMedCentralGoogle Scholar
  90. Quesada T et al (2010) Association mapping of quantitative disease resistance in a natural population of loblolly pine (Pinus taeda L.). Genetics 186:677–686PubMedPubMedCentralCrossRefGoogle Scholar
  91. Rafalski JA (2010) Association genetics in crop improvement. Curr Opin Plant Biol 13:174–180PubMedCrossRefGoogle Scholar
  92. Reale S et al (2006) SNP-based markers for discriminating olive (Olea europaea L.) cultivars. Genome 49:1193–1205PubMedCrossRefGoogle Scholar
  93. Rikkerink EH, Oraguzie NC, Gardiner SE (2007) Prospects of association mapping in perennial horticultural crops. In: Oraguzie NC, Rikkerink EHA, Gardiner SE, de Silva HN (eds) Association mapping in plants. Springer, New York, pp 249–269CrossRefGoogle Scholar
  94. Sadok IB et al (2013) QTL mapping of flowering and fruiting traits in olive. PLoS One 8:e62831PubMedPubMedCentralCrossRefGoogle Scholar
  95. Saeed M, Wangzhen G, Tianzhen Z (2014) Association mapping for salinity tolerance in cotton (‘Gossypium hirsutum’ L.) germplasm from US and diverse regions of ChinaGoogle Scholar
  96. Sakiroglu M, Sherman-Broyles S, Story A, Moore KJ, Doyle JJ, Brummer EC (2012) Patterns of linkage disequilibrium and association mapping in diploid alfalfa (M. sativa L.). Theor Appl Genet 125:577–590PubMedPubMedCentralCrossRefGoogle Scholar
  97. Semagn K, Bjørnstad Å, Xu Y (2010) The genetic dissection of quantitative traits in crops. Electron J Biotechnol 13:16–17CrossRefGoogle Scholar
  98. Semon M, Nielsen R, Jones MP, McCouch SR (2005) The population structure of African cultivated rice Oryza glaberrima (Steud.) evidence for elevated levels of linkage disequilibrium caused by admixture with O. sativa and ecological adaptation. Genetics 169:1639–1647PubMedPubMedCentralCrossRefGoogle Scholar
  99. Shulaev V et al (2008) Multiple models for Rosaceae genomics Plant physiology 147:985–1003PubMedGoogle Scholar
  100. Simko I, Costanzo S, Haynes K, Christ B, Jones R (2004) Linkage disequilibrium mapping of a Verticillium dahliae resistance quantitative trait locus in tetraploid potato (Solanum tuberosum) through a candidate gene approach. Theor Appl Genet 108:217–224PubMedCrossRefGoogle Scholar
  101. Skøt L et al (2007) Association of candidate genes with flowering time and water-soluble carbohydrate content in Lolium perenne (L.). Genetics 177:535–547PubMedPubMedCentralCrossRefGoogle Scholar
  102. Slatkin M (2008) Linkage disequilibrium—understanding the evolutionary past and mapping the medical future. Nat Rev Genet 9:477–485PubMedCrossRefGoogle Scholar
  103. Soto-Cerda BJ, Duguid S, Booker H, Rowland G, Diederichsen A, Cloutier S (2014) Association mapping of seed quality traits using the Canadian flax (Linum usitatissimum L.) core collection. Theor Appl Genet 127:881–896PubMedPubMedCentralCrossRefGoogle Scholar
  104. Szalma S, Buckler E IV, Snook M, McMullen M (2005) Association analysis of candidate genes for maysin and chlorogenic acid accumulation in maize silks. Theoretical and Applied Genetics 110:1324–1333PubMedCrossRefGoogle Scholar
  105. Thornsberry JM, Goodman MM, Doebley J, Kresovich S, Nielsen D, Buckler ES (2001) Dwarf8 polymorphisms associate with variation in flowering time. Nat Genet 28:286–289PubMedCrossRefGoogle Scholar
  106. Tripoli E, Giammanco M, Tabacchi G, Di Majo D, Giammanco S, La Guardia M (2005) The phenolic compounds of olive oil: structure, biological activity and beneficial effects on human health. Nutr Res Rev 18:98–112PubMedCrossRefGoogle Scholar
  107. TUIK (2016) Turkish Statistical InstituteGoogle Scholar
  108. Turner SD (2014) qqman: an R package for visualizing GWAS results using QQ and manhattan plots. bioRxiv. doi:10.1101/005165 Google Scholar
  109. Uchiyama K et al (2013) Demonstration of genome-wide association studies for identifying markers for wood property and male strobili traits in Cryptomeria japonica. PloS One 8:e79866PubMedPubMedCentralCrossRefGoogle Scholar
  110. Uylaser V, Yildiz G (2013) Fatty acid profile and mineral content of commercial table olives from Turkey. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 41:518–523Google Scholar
  111. Van Inghelandt D, Reif JC, Dhillon BS, Flament P, Melchinger AE (2011) Extent and genome-wide distribution of linkage disequilibrium in commercial maize germplasm. Theor Appl Genet 123:11–20PubMedCrossRefGoogle Scholar
  112. Varshney RK, Chabane K, Hendre PS, Aggarwal RK, Graner A (2007) Comparative assessment of EST-SSR, EST-SNP and AFLP markers for evaluation of genetic diversity and conservation of genetic resources using wild, cultivated and elite barleys. Plant Sci 173:638–649CrossRefGoogle Scholar
  113. Virk PS, Ford-Lloyd BV, Jackson MT, Pooni HS, Clemeno TP, Newbury HJ (1996) Predicting quantitative variation within rice germplasm using molecular markers. Heredity 76:296–304CrossRefGoogle Scholar
  114. Visioli F, Bellomo G, Montedoro G, Galli C (1995) Low density lipoprotein oxidation is inhibited in vitro by olive oil constituents. Atherosclerosis 117:25–32PubMedCrossRefGoogle Scholar
  115. Wu S, Collins G, Sedgley M (2004) A molecular linkage map of olive (Olea europaea L.) based on RAPD, microsatellite, and SCAR markers. Genome 47:26–35PubMedCrossRefGoogle Scholar
  116. Würschum T (2012) Mapping QTL for agronomic traits in breeding populations. Theor Appl Genet 125:201–210PubMedCrossRefGoogle Scholar
  117. Yan J, Warburton M, Crouch J (2011) Association mapping for enhancing maize (L.) genetic improvement. Crop Sci 51:433–449CrossRefGoogle Scholar
  118. Yang X et al (2010) Genetic analysis and characterization of a new maize association mapping panel for quantitative trait loci dissection. Theor Appl Genet 121:417–431PubMedCrossRefGoogle Scholar
  119. Yu J, Buckler ES (2006) Genetic association mapping and genome organization of maize. Curr Opin Biotechnol 17:155–160PubMedCrossRefGoogle Scholar
  120. Yu J et al (2005) A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet 38:203–208PubMedCrossRefGoogle Scholar
  121. Yu H, Deng Z, Xiang C, Tian J (2012) Analysis of diversity and linkage disequilibrium mapping of agronomic traits on B-genome of wheat. J Genom 1:78–88Google Scholar
  122. Zhang P, Liu X, Tong H, Lu Y, Li J (2014) Association mapping for important agronomic traits in core collection of rice (Oryza sativa L.) with SSR markers. PLoS One 9:e111508PubMedPubMedCentralCrossRefGoogle Scholar
  123. Zhao K et al (2011) Genome-wide association mapping reveals a rich genetic architecture of complex traits in Oryza sativa. Nat Commun 2:467PubMedPubMedCentralCrossRefGoogle Scholar
  124. Zhao Y, Wang H, Chen W, Li Y (2014) Genetic structure, linkage disequilibrium and association mapping of verticillium wilt resistance in elite cotton (Gossypium hirsutum L.) germplasm population. PLoS One 9:e86308PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Hilal Betul Kaya
    • 1
  • Oznur Cetin
    • 2
  • Hulya Sozer Kaya
    • 2
  • Mustafa Sahin
    • 2
  • Filiz Sefer
    • 2
  • Bahattin Tanyolac
    • 1
  1. 1.Department of BioengineeringEge UniversityIzmirTurkey
  2. 2.Olive Research StationIzmirTurkey

Personalised recommendations