Biochemical Genetics

, Volume 54, Issue 4, pp 337–347 | Cite as

The Expression of Nuclear Transcription Factor Kappa B (NF-κB) in the Case of Critically Ill Polytrauma Patients with Sepsis and Its Interactions with microRNAs

  • Marius Papurica
  • Alexandru Florin Rogobete
  • Dorel Sandesc
  • Carmen Alina Cradigati
  • Mirela Sarandan
  • Dan Ciprian Crisan
  • Florin George Horhat
  • Ovidiu Boruga
  • Raluca Dumache
  • Kundnani Rajpal Nilima
  • Razvan Nitu
  • Horia Stanca
  • Ovidiu Horea Bedreag
Review

Abstract

Critical polytrauma patients present a series of pathophysiological disturbances, biochemical and molecular dysfunction, which comprise to be the major cause of intensive care unit admission. In regard to molecular damage, there exists a series of factors, which all together contribute to the aggravation of the clinical status leading to increased mortality rate in these patients. One of the most important biochemical factors involved is the nuclear transcription factor B (NF-κB). Impaired NF-κB functioning is reflected on the clinical status of the patient through increased production of pro-inflammatory molecule, leading to multiple organ dysfunction syndrome. In addition to this, through microRNAs interactions, various pathophysiological as well as biochemical disturbances are produced, which altogether further reduce the patient’s survival rate. In this paper, we would like to present the modifications seen in the expression of NF-κB in critically polytraumatized patients with sepsis. In additions to this, we would like to discuss the correlation between the microRNAs and its further implications in clinical status of these patients.

Keywords

Nuclear transcription factor kappa B (NF-κB) Sepsis microRNAs Polytrauma patients 

References

  1. Abraham E (2000) NF-κB activation. Crit Care Med 28:N100–N104CrossRefPubMedGoogle Scholar
  2. Abraham E (2003) Nuclear factor-κB and its role in sepsis-associated organ failure. J Infect Dis 187:S364–S369. doi:10.1086/374750 CrossRefPubMedGoogle Scholar
  3. Altavilla D, Saitta A, Guarini S et al (2001) Oxidative stress causes nuclear factor-κB activation in acute hypovolemic hemorrhagic shock. Free Radic Biol Med 30:1055–1066. doi:10.1016/S0891-5849(01)00492-0 CrossRefPubMedGoogle Scholar
  4. Arnalich F, Garcia-Palomero E, Lopez J et al (2000) Predictive value of nuclear factor kappa B activity and plasma cytokine levels in patients with sepsis. Infect Immun 68:1942–1945CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bains M, Hall ED (2012) Antioxidant therapies in traumatic brain and spinal cord injury. Biochim Biophys Acta Mol Basis Dis 1822:675–684. doi:10.1016/j.bbadis.2011.10.017 CrossRefGoogle Scholar
  6. Bakula M, Milicevic G, Bakula M et al (2016) Kinetics of ischemia-modified albumin following exercise-induced myocardial ischemia. Clin Lab 62:2015CrossRefGoogle Scholar
  7. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297. doi:10.1016/S0092-8674(04)00045-5 CrossRefPubMedGoogle Scholar
  8. Bethea JR, Castro M, Keane RW et al (1998) Traumatic spinal cord injury induces nuclear factor-kappaB activation. J Neurosci 18:3251–3260PubMedGoogle Scholar
  9. Birbach A, Gold P, Binder BR et al (2002) Signaling molecules of the NF-κB pathway shuttle constitutively between cytoplasm and nucleus. J Biol Chem 277:10842–10851CrossRefPubMedGoogle Scholar
  10. Blackwell TS, Christman JW (1997) The role of nuclear factor-kappa B in cytokine gene regulation. Am J Respir Cell Mol Biol 17:3–9CrossRefPubMedGoogle Scholar
  11. Böhrer H, Qiu F, Zimmermann T et al (1997) Role of NFkappaB in the mortality of sepsis. J Clin Invest 100:972–985. doi:10.1172/JCI119648 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Bonaventura A, Liberale L, El-dib NH et al (2016) Case report anemia due to inflammation in an anti-coagulated patient with blue rubber bleb nevus syndrome. Clin Lab. doi:10.7754/Clin.Lab.2015.150617 PubMedGoogle Scholar
  13. Bosmann M, Ward PA (2013) The inflammatory response in sepsis. Trends Immunol 34:129–136. doi:10.1016/j.it.2012.09.004 CrossRefPubMedGoogle Scholar
  14. Boursier G, Avignon A, Kuster N et al (2016) Procalcitonin, an independent marker of abdominal fat accumulation in obese patients. Clin Lab. doi:10.7754/Clin.Lab.2015.150736 PubMedGoogle Scholar
  15. Burkhardt M, Nienaber U, Pizanis A et al (2012) Acute management and outcome of multiple trauma patients with pelvic disruptions. Crit Care 16:R163. doi:10.1186/cc11487 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Charchaflieh J, Rushbrook J, Worah S, Zhang M (2015) Activated complement factors as disease markers for sepsis. Dis Mark. doi:10.1155/2015/382463 Google Scholar
  17. Chen J, Chen X, Lei Y et al (2011) Vascular protective potential of the total flavanol glycosides from Abacopteris penangiana via modulating nuclear transcription factor-κB signaling pathway and oxidative stress. J Ethnopharmacol 136:217–223. doi:10.1016/j.jep.2011.04.052 CrossRefPubMedGoogle Scholar
  18. Cho S-Y, Choi J-H (2014) Biomarkers of sepsis. Infect Chemother 46:1–12. doi:10.3947/ic.2014.46.1.1 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Daniel Trancă S, Laura Petrişor C, Hagău N (2014) Biomarkers in polytrauma induced systemic inflammatory response syndrome and sepsis—a narrative review. Rom J Anaesth Intens Care 21:118–122Google Scholar
  20. Dumache R, Rogobete AF, Bedreag OH et al (2015) Use of miRNAs as biomarkers in sepsis. Anal Cell Path. doi:10.1155/2015/186716 Google Scholar
  21. Etheridge A, Lee I, Hood L et al (2011) Extracellular microRNA: a new source of biomarkers. Mutat Res Fundam Mol Mech Mutagen 717:85–90. doi:10.1016/j.mrfmmm.2011.03.004 CrossRefGoogle Scholar
  22. Garcia-alvarez M, Marik P, Bellomo R (2014) Sepsis-associated hyperlactatemia. Crit Care 18:503CrossRefPubMedPubMedCentralGoogle Scholar
  23. Goodwin AJ, Guo C, Cook JA et al (2015) Plasma levels of microRNA are altered with the development of shock in human sepsis: an observational study. Crit Care 19:440. doi:10.1186/s13054-015-1162-8 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Hafizi M, Atashi A, Bakhshandeh B et al (2012) MicroRNAs as markers for neurally committed CD133+/CD34+ stem cells derived from human umbilical cord blood. Biochem Genet 51:175–188. doi:10.1007/s10528-012-9553-x CrossRefPubMedGoogle Scholar
  25. Hayashi K, Tabe Y, Miida T (2016) Impact of clotting condition on the measurement of circulating microRNAs in serum. Clin Lab 1–5:2015. doi:10.7754/Clin.Lab.2015.150711 Google Scholar
  26. Hazeldine J, Hampson P, Lord JM (2014) The impact of trauma on neutrophil function. Injury 45:1824–1833. doi:10.1016/j.injury.2014.06.021 CrossRefPubMedGoogle Scholar
  27. Huber-Lang M, Kovtun A, Ignatius A (2013) The role of complement in trauma and fracture healing. Semin Immunol 25:73–78. doi:10.1016/j.smim.2013.05.006 CrossRefPubMedGoogle Scholar
  28. Hulsmans M, De Keyzer D, Holvoet P (2011) MicroRNAs regulating oxidative stress and inflammation in relation to obesity and atherosclerosis. FASEB J 25:2515–2527. doi:10.1096/fj.11-181149 CrossRefPubMedGoogle Scholar
  29. Hur W, Lee JH, Kim SW et al (2015) Downregulation of microRNA-451 in non-alcoholic steatohepatitis inhibits fatty acid-induced proinflammatory cytokine production through the AMPK/AKT pathway. Int J Biochem Cell Biol 64:265–276. doi:10.1016/j.biocel.2015.04.016 CrossRefPubMedGoogle Scholar
  30. Kaya M, Yildiz MA (2008) Genetic diversity among Turkish native chickens, Denizli and Gerze, estimated by microsatellite markers. Biochem Genet 46:480–491. doi:10.1007/s10528-008-9164-8 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Larche J, Lancel S, Hassoun SM et al (2006) Inhibition of mitochondrial permeability transition prevents sepsis-induced myocardial dysfunction and mortality. J Am Coll Cardiol 48:377–385. doi:10.1016/j.jacc.2006.02.069 CrossRefPubMedGoogle Scholar
  32. Lenkala D, Gamazon ER, LaCroix B et al (2015) MicroRNA biogenesis and cellular proliferation. Transl Res. doi:10.1016/j.trsl.2015.01.012 PubMedPubMedCentralGoogle Scholar
  33. Li J, Li N, Gu Y et al (2011) Dynamic activity of NF-κB in multiple trauma patients and protective effects of ulinastain. Chinese J Traumatol 14:354–358. doi:10.3760/cma.j.issn.1008-1275.2011.06.006 Google Scholar
  34. Li Y, Dalli J, Chiang N et al (2013) Plasticity of leukocytic exudates in resolving acute inflammation is regulated by MicroRNA and proresolving mediators. Immunity 39:885–898. doi:10.1016/j.immuni.2013.10.011 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Libermann TA, Baltimore D (1990) Activation of interleukin-6 gene expression through the NF-kappaB transcription factor. Mol Cell Biol 10:2327–2334. doi:10.1128/MCB.10.5.2327.Updated CrossRefPubMedPubMedCentralGoogle Scholar
  36. Liu SF, Malik AB (2006) NF-kappaB activation as a pathological mechanism of septic shock and inflammation. Am J Physiol Lung Cell Mol Physiol 290:L622–L645. doi:10.1152/ajplung.00477.2005 CrossRefPubMedGoogle Scholar
  37. Lu Q, Duan H, Yu J et al (2016) Are global coagulation and platelet parameters useful markers for predicting late-onset neonatal sepsis? Clin Lab. doi:10.7754/Clin.Lab.2015.150524 Google Scholar
  38. Luan Y, Yao Y, Xiao X, Sheng Z (2015) Insights into the apoptotic death of immune cells in sepsis. J Interferon Cytokine Res 35:17–22. doi:10.1089/jir.2014.0069 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Ma X, Becker Buscaglia LE, Barker JR, Li Y (2011) MicroRNAs in NF-kappaB signaling. J Mol Cell Biol 3:159–166. doi:10.1093/jmcb/mjr007 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Ma Y, Vilanova D, Atalar K et al (2013) Genome-wide sequencing of cellular microRNAs identifies a combinatorial expression signature diagnostic of sepsis. PLoS One 8:e75918. doi:10.1371/journal.pone.0075918 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Macias S, Michlewski G, Cáceres JF (2009) Hormonal regulation of microRNA biogenesis. Mol Cell 36:172–173. doi:10.1016/j.molcel.2009.10.006 CrossRefPubMedGoogle Scholar
  42. McGhan LJ, Jaroszewski DE (2012) The role of toll-like receptor-4 in the development of multi-organ failure following traumatic haemorrhagic shock and resuscitation. Injury 43:129–136. doi:10.1016/j.injury.2011.05.032 CrossRefPubMedGoogle Scholar
  43. Mendes Arent A, De Souza LF, Walz R, Dafre AL (2014) Perspectives on molecular biomarkers of oxidative stress and antioxidant strategies in traumatic brain injury. Biomed Res Int. doi:10.1155/2014/723060 PubMedPubMedCentralGoogle Scholar
  44. Ogbozor UD, Opene M, Renteria LS et al (2015) Mechanism by which nuclear factor-kappa beta (NF-kB) regulates ovine fetal pulmonary vascular smooth muscle cell proliferation. Mol Genet Metab Rep 4:11–18. doi:10.1016/j.ymgmr.2015.05.003 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Olarerin-George AO, Anton L, Hwang Y-C et al (2013) A functional genomics screen for microRNA regulators of NF-kappaB signaling. BMC Biol 11:19. doi:10.1186/1741-7007-11-19 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Rać ME, Suchy J, Kurzawski G et al (2012) Polymorphism of the CD36 gene and cardiovascular risk factors in patients with coronary artery disease manifested at a young age. Biochem Genet 50:103–111. doi:10.1007/s10528-011-9475-z CrossRefPubMedGoogle Scholar
  47. Ranji N, Sadeghizadeh M, Karimipoor M et al (2015) MicroRNAs signature in IL-2-induced CD4+ T cells and their potential targets. Biochem Genet 53:169–183. doi:10.1007/s10528-015-9677-x CrossRefPubMedGoogle Scholar
  48. Roderburg C, Luedde M, Vargas Cardenas D et al (2013) Circulating microRNA-150 serum levels predict survival in patients with critical illness and sepsis. PLoS One. doi:10.1371/journal.pone.0054612 PubMedPubMedCentralGoogle Scholar
  49. Sagor MAT, Tabassum N, Potol MA, Alam MA (2015) Xanthine oxidase inhibitor, allopurinol, prevented oxidative stress, fibrosis, and myocardial damage in isoproterenol induced aged rats. Oxid Med Cell Longev. doi:10.1155/2015/478039 PubMedPubMedCentralGoogle Scholar
  50. Schwartz MD, Moore EE, Moore FA et al (1996) Nuclear factor-kappa B is activated in alveolar macrophages from patients with acute respiratory distress syndrome. Crit Care Med 24:1285–1292CrossRefPubMedGoogle Scholar
  51. Senol Tuncay S, Okyay P, Bardakci F (2009) Identification of NF-κB1 and NF-κBIΑ polymorphisms using PCR–RFLP assay in a Turkish population. Biochem Genet 48:104–112. doi:10.1007/s10528-009-9302-y CrossRefPubMedGoogle Scholar
  52. Shrivastava AK, Singh HV, Raizada A, Singh SK (2015) C-reactive protein, inflammation and coronary heart disease. Egypt Hear J 67:89–97. doi:10.1016/j.ehj.2014.11.005 CrossRefGoogle Scholar
  53. Sies H (2015) Oxidative stress: a concept in redox biology and medicine. Redox Biol 4:180–183. doi:10.1016/j.redox.2015.01.002 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Singer M (2014) The role of mitochondrial dysfunction in sepsis-induced multi-organ failure. Virulence 5:66–72. doi:10.4161/viru.26907 CrossRefPubMedGoogle Scholar
  55. Staal FJ, Roederer M, Herzenberg LA (1990) Intracellular thiols regulate activation of nuclear factor kappa B and transcription of human immunodeficiency virus. Proc Natl Acad Sci USA 87:9943–9947CrossRefPubMedPubMedCentralGoogle Scholar
  56. Sun X, Icli B, Wara AK et al (2012) MicroRNA-181b regulates NF-κB-mediated vascular inflammation. J Clin Invest 122:1–18. doi:10.1172/JCI61495DS1 CrossRefGoogle Scholar
  57. Surbatovic M, Veljovic M, Jevdjic J et al (2013) Immunoinflammatory response in critically ill patients: severe sepsis and/or trauma. Mediat Inflamm. doi:10.1155/2013/362793 Google Scholar
  58. Tacke F, Roderburg C, Benz F et al (2014) Levels of circulating miR-133a are elevated in sepsis and predict mortality in critically ill patients. Crit Care Med 42:1096–1104. doi:10.1097/CCM.0000000000000131 CrossRefPubMedGoogle Scholar
  59. Taganov KD, Boldin MP, Chang K-J, Baltimore D (2006) NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc Natl Acad Sci USA 103:12481–12486. doi:10.1073/pnas.0605298103 CrossRefPubMedPubMedCentralGoogle Scholar
  60. Tak PP, Firestein GS, Tak PP, Firestein GS (2001) NF-kappaB: a key role in inflammatory diseases. J Clin Invest 107:7–11. doi:10.1172/JCI11830 CrossRefPubMedPubMedCentralGoogle Scholar
  61. Thair SA, Walley KR, Nakada T-A et al (2011) A single nucleotide polymorphism in NF-{kappa}b inducing kinase is associated with mortality in septic shock. J Immunol 186:2321–2328. doi:10.4049/jimmunol.1002864 CrossRefPubMedGoogle Scholar
  62. Wu M, Gu JT, Yi BIN et al (2015) microRNA-23b regulates the expression of inflammatory factors in vascular endothelial cells during sepsis. Exp Ther Med 9:1125–1132. doi:10.3892/etm.2015.2224 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Marius Papurica
    • 1
    • 2
  • Alexandru Florin Rogobete
    • 1
    • 2
  • Dorel Sandesc
    • 1
    • 2
  • Carmen Alina Cradigati
    • 3
  • Mirela Sarandan
    • 3
  • Dan Ciprian Crisan
    • 2
  • Florin George Horhat
    • 2
  • Ovidiu Boruga
    • 2
  • Raluca Dumache
    • 2
  • Kundnani Rajpal Nilima
    • 2
  • Razvan Nitu
    • 2
  • Horia Stanca
    • 4
  • Ovidiu Horea Bedreag
    • 1
    • 2
  1. 1.Clinic of Anesthesia and Intensive CareEmergency County Hospital “Pius Brinzeu”TimisoaraRomania
  2. 2.Faculty of Medicine“Victor Babes” University of Medicine and PharmacyTimisoaraRomania
  3. 3.Clinic of Anesthesia and Intensive Care “Casa Austria”Emergency County Hospital “Pius Brinzeu”TimisoaraRomania
  4. 4.Faculty of Medicine“Carol Davila” University of Medicine and PharmacyBucharestRomania

Personalised recommendations