Biochemical Genetics

, Volume 53, Issue 4–6, pp 79–92 | Cite as

Seasonal and Cyclical Changes in Genetic Composition of the Marine Intertidal Rock Pool Copepod Tigriopus brevicornis

  • Alain Van Wormhoudt
Original Article


Tigriopus brevicornis is a marine rock pool copepod widely distributed along Atlantic coasts. Due to the absence of a known dispersal mechanism by free swimming stages, exchanges between populations over long distances are questionable. In order to analyse the evolution of an isolated supralittoral rock pool population, sampling of the copepod was performed monthly during 1 year and compared to samplings over 5 years in the same rock pool, as well as from other rock pools. Using ITS1 analysis, cyclical changes in genetic composition were detected. Our results give clear indications concerning the segregation of the rock pool population and a lack of gene flow among outside populations. A network analysis shows the presence of several shared dominant haplotypes and also singletons differing by one mutation point. Fst analyses indicate that the main changes occur in autumn and winter. The few analogies of ITS1 sequences with nearby populations may indicate that new migrants must re-colonise the pools from surrounding rock crevices in the intertidal habitat where they may have found a refuge after bad weather conditions.


ITS1 Marine rock pool Copepod Monthly changes 


  1. Bandelt HJ, Forster P, Rohl A (1999) Median-joining networks for inferring intraspecific phylogenies. Mol Evol 16:37–48CrossRefGoogle Scholar
  2. Boileau M, Taylor BE (1994) Chance events, habitat age and the genetic structure of pond populations. Archiv für Hydrobiologie 132:191–202Google Scholar
  3. Boileau MG, Hebert PDN, Schwartz SS (1992) Non-equilibrium gene frequency divergence: persistent founder effects in natural populations. J Evol Biol 5:25–39CrossRefGoogle Scholar
  4. Brown E (1991) Outbreeding depression as a cost of dispersal in the harpacticoid copepod Tigriopus californicus. Biol Bull 181:123–126CrossRefGoogle Scholar
  5. Burton RS (1990) Hybrid breakdown in developmental time in the copepod Tigriopus californicus. Evolution 44:1814–1822CrossRefGoogle Scholar
  6. Burton RS (1997) Genetic evidence for long term persistence of Marine invertebrate populations in an ephemeral environment. Evolution 51:993–998CrossRefGoogle Scholar
  7. Burton RS (1998) Intraspecific phylogeography across the point conception biogeographic boundary. Evolution 52:734–745CrossRefGoogle Scholar
  8. Burton RS, Feldman MW (1981) Population genetics of Tigriopus californicus II: differentiation among neighboring populations. Evolution 35:1192–1205CrossRefGoogle Scholar
  9. Burton RS, Lee BN (1994) Nuclear and mitochondrial gene genealogies and allozyme polymorphism across a major phylogeographic break in the copepod Tigriopus californicus. Proc Natl Acad Sci USA 91:5197–5201CrossRefPubMedCentralPubMedGoogle Scholar
  10. Burton RS, Rawson PD, Edmands S (1999) Genetic architecture of physiological phenotypes: empirical evidence for co adapted gene complexes. Am Zool 39:451–462Google Scholar
  11. Chullasorn S, Ivanenko VN, Dahms HU, Kangtia P, Yang WX (2012) A new species of Tigriopus (Copepoda, Harpacticoida, Harpacticidae) from Thailand with the description of its naupliar development. Helgol Mar Res 66:139–151CrossRefGoogle Scholar
  12. Crease TJ, Lynch M, Spitze K (1990) Hierarchical analysis of population genetic variation in mitochondrial and nuclear genes of Daphnia pulex. Mol Biol Evol 7(5):444–458PubMedGoogle Scholar
  13. Davenport J, Barnett PR, McAllen RJ (1997) Environmental tolerances of three species of the harpacticoid copepod genus Tigriopus. J Mar Biol Assoc UK 77:3–16CrossRefGoogle Scholar
  14. Denis F, Ravallec R, Pavillon JF, Van Wormhoudt A (2009) Molecular segregation of Atlantic populations of the intertidal copepod meiofauna Tigriopus brevicornis. Scientia Marina 73:3579–3587CrossRefGoogle Scholar
  15. Dybdahl MF (1994) Extinction, recolonization, and the genetic structure of tidepool copepod populations. Evol Ecol 8:113–124CrossRefGoogle Scholar
  16. Edmands S (2001) Phylogeography of the intertidal copepod Tigriopus californicus reveals substantially reduced population differentiation at northern latitude. Mol Ecol 10:1743–1750CrossRefPubMedGoogle Scholar
  17. Endler JA (1977) Geographic variation, speciation and clines. Princeton University Press, Princeton, p 262Google Scholar
  18. Fabry S, Kohler A, Coleman AW (1999) Intraspecies analysis: comparison of ITS sequence data and gene intron sequence data with breeding data for a worldwide collection of Gonium pectorale. J Mol Evol 48:94–101CrossRefPubMedGoogle Scholar
  19. Forget J, Beliaeff B, Bocquene G (2003) Acetylcholinesterase activity in copepods (Tigriopus brevicornis) from the Vilaine River estuary, France, as a biomarker of neurotoxic contaminants. Aquat Toxicol 62:195–204CrossRefPubMedGoogle Scholar
  20. Handschumacher L, Steinardottir MB, Edmands S, Ingolfsson A (2010) Phylogeography of the rock-pool copepod Tigriopus brevicornis in the northern North Atlantic, and its relationship to other species of the genus. Mar Biol 157:1357–1366CrossRefGoogle Scholar
  21. Hanski I, Simberloff D (1997) The metapopulation approach, its history, conceptural domain, and application to conservation. In: Hanski I, Gilpin ME (eds) Metapopulation biology: ecology, genetics and evolution. Academic Press, New York, pp 5–26Google Scholar
  22. Harris RP (1973) Feeding growth, reproduction and nitrogen utilized by the harpacticoid copepod Tigriopus brevicornis. J Mar Bio Assoc UK 35:785–800CrossRefGoogle Scholar
  23. Harris J, Crandall KA (2000) Intragenomic Variation within ITS1 and ITS2 of freshwater crayfishes (Decapoda: Cambaridae): implications for phylogenetic and microsatellite studies. Mol Biol Evol 17(2):284–291CrossRefPubMedGoogle Scholar
  24. Harrison S, Hastings A (1996) Genetic and evolutionary consequences of metapopulation structure. Trends Ecol Evol 11:180–183CrossRefPubMedGoogle Scholar
  25. Hillis DM, Davis SK (1988) Ribosomal DNA: intraspecific polymorphisms, concerted evolution and phylogeny reconstruction. Syst Zool 37:63–66CrossRefGoogle Scholar
  26. Johnson MP (2001) Metapopulation dynamics of Tigriopus brevicornis (Harpacticoida) in intertidal rock pools. Mar Ecol Progr Series 211:215–224CrossRefGoogle Scholar
  27. Kann LM, Wishner K (1996) Genetic population structure of the copepod Calanus finmarchicus in the Gulf of Maine: allozyme and amplified mitochondrial DNA variation. Mar Biol 125:65–75CrossRefGoogle Scholar
  28. Kumar S, Tamura K, Nei M (2004) MEGA 3: integrated software for molecular evolutionary genetic analysis and sequences alignments. Brief Bioinf 5:150–163CrossRefGoogle Scholar
  29. Levin SA, Paine RT (1974) Disturbance, patch formation and community structure. Proc Natl Acad Sci USA 71:2744–2747CrossRefPubMedCentralPubMedGoogle Scholar
  30. Malécot G (1950) Quelques schémas probabilistes sur la variabilité des populations naturelles. Annales de l’Université de Lyon Sciences 13:37–60Google Scholar
  31. McAllen R, Brennan R (2009) The effect of environmental variation on the reproductive development time and output of the high-shore rock pool copepod Tigriopus brevicornis. J Exp Mar Biol 368:75–80CrossRefGoogle Scholar
  32. McAllen R, Taylor AC, Davenport J (1999) The effects of temperature and oxygen partial pressure on the rate of oxygen consumption of the high-shore rock pool copepod Tigriopus brevicornis. Comp Biochem Physiol Part A 123:195–202CrossRefGoogle Scholar
  33. Miller BR, Crabtree MB, Savage HM (1996) Phylogeny of fourteen Culex mosquitos species including the Culex pipiens complex inferred from the internal transcribed spacers of ribosomal DNA. Insect Mol Biol 5:93–107CrossRefPubMedGoogle Scholar
  34. Pannell JR, Charlesworth B (2000) Effects of metapopulation process on measures of genetic diversity. Philos Trans R Soc Lond 355:1851–1864CrossRefGoogle Scholar
  35. Pavillon JF, Oudot J, Dlugon A, Roger E, Juhel G (2002) Impact of the ‘Erika’ oil spill on the Tigriopus brevicornis ecosystem at the Le Croisic headland (France): preliminary observations. J Mar Biol Assoc UK 82:409–413CrossRefGoogle Scholar
  36. Pleyte KA, Duncan SD, Phillips RB (1992) Evolutionary relationship of the Salmonid fish genus Salvenilus inferred from DNA Sequences of the first internal transcribed spacer (ITS1) of ribosomal DNA. Mol Phyl Evol 1:223–230CrossRefGoogle Scholar
  37. Rozas J, Sanchez-DelBarrio JC, Messeguer X, Rozas R (2003) DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19(18):2496–2497CrossRefPubMedGoogle Scholar
  38. Schizas NV, Coull BC, Chandler GT, Quattro JM (2002) Sympatry of distinct mitochondrial DNA lineages in a copepod inhabiting estuarine creeks in the southeastern USA. Mar Biol 140:585–594CrossRefGoogle Scholar
  39. Schneider S, Roessli D, Excoffier L (2000) Arlequin v2.000: a software for population genetics data analysis. Genetics and Biometry laboratory. University of Geneva. SwitzerlandGoogle Scholar
  40. Schulenberg JHG, Englisch U, Wägele JW (1999) Evolution of ITS1 rDNA in the digenea (Platyhelminthes trematod): 3′ end sequence conservation and its phylogenetic utility. J Mol Evol 48:2–12CrossRefGoogle Scholar
  41. Slatkin M (1987) Gene flow and the geographic structure of natural populations. Science 236:787–792CrossRefPubMedGoogle Scholar
  42. Slatkin M (1993) Isolation by distance in equilibrium and non-equilibrium populations. Evolution 47(1):264–279CrossRefGoogle Scholar
  43. Steinarsdóttir MB, Ingólfsson A, Ólafsson E (2003) Seasonality of harpacticoids in a tidal pool, SW-Iceland. Hydrobiologia 503:211–221CrossRefGoogle Scholar
  44. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA 4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599CrossRefPubMedGoogle Scholar
  45. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680CrossRefPubMedCentralPubMedGoogle Scholar
  46. Vogler AP, DeSalle R (1994) Evolution and phylogenetic information content of the ITS-1 region in the tiger beetle Cicindela dorsalis. Mol Biol Evol 11:393–405PubMedGoogle Scholar
  47. Wade MJ, McCauley DE (1988) Extinction and recolonization: their effects on the genetic differentiation of local populations. Evolution 42:995–1005CrossRefGoogle Scholar
  48. Wesson DM, Porter CH, Collins FH (1993) Sequence and secondary structure comparisons of ITS rDNA in mosquitoes (Diptera: Culicidae). Mol Phyl Evol 1:253–269CrossRefGoogle Scholar
  49. Willet CS, Ladner JT (2009) Investigations of fine-scale phylogeography in Tigriopus californicus reveal historical patterns of population divergence. BMC Evol Biol 9:139–159CrossRefGoogle Scholar
  50. William SC, DeBry RW, Feder JL (1988) A commentary on the use of ribosomal DNA in systematic studies. Syst Zool 37:60–62CrossRefGoogle Scholar
  51. Wright S (1943) Isolation by distance. Genetics 28:114–138PubMedCentralPubMedGoogle Scholar
  52. Yeatman HC (1962) The problem of dispersal of marine littoral copepods in the Atlantic ocean, including some re description of species. Crustaceana 4:253–272CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.UMR 7208 BOREA, Station de Biologie MarineMuséum National d’Histoire NaturelleConcarneauFrance

Personalised recommendations