Biochemical Genetics

, Volume 51, Issue 3–4, pp 223–229 | Cite as

Genetic Diversity of Winter Wheat (Triticum aestivum L.) Revealed by SSR Markers

Note

Keywords

Wheat Cultivar Wheat Genotype Polymorphic Information Content Genomic SSRs Average Genetic Distance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This research was supported by Tubitak Kamag (Project no. 105G075). The authors thank Dr. Necmettin Bolat from AARI for providing the plant materials.

References

  1. Ahmad M (2002) Assessment of genomic diversity among wheat genotypes as determined by simple sequence repeats. Genome 45:646–651PubMedCrossRefGoogle Scholar
  2. Akfirat FS, Aydin Y, Ertugrul F, Hasancebi S, Kazan K, Budak H, Akan K, Mert Z, Bolat N, Yorgancılar O, Uncuoglu AA (2010) A microsatelite marker for yellow rust resistance in wheat. Cereal Res Commun 38:203–210CrossRefGoogle Scholar
  3. Almanza-Pinzon MI, Khairallah M, Fox PN, Warburton ML (2003) Comparison of molecular markers and coefficients of parentage for the analysis of genetic diversity among spring bread wheat accessions. Euphytica 130:77–86CrossRefGoogle Scholar
  4. Bohn M, Utz HF, Melchinger AE (1999) Genetic similarities among winter wheat cultivars determined on the basis of RFLPs, AFLPs and SSRs and their use for predicting progeny variance. Crop Sci 39:228–237CrossRefGoogle Scholar
  5. Börner A, Chebotar S, Korzun V (2000) Molecular characterization of the genetic integrity of wheat (Triticum aestivum L.) germplasm after long-term maintenance. Theor Appl Genet 100:494–497CrossRefGoogle Scholar
  6. Botstein D, White RL, Skolnick M, Davis RW (1980) Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet 32:314–331PubMedGoogle Scholar
  7. Dreisigacker S, Zhang P, Warburton ML, Skovmand B, Hoisington D, Melchinger AE (2005) Genetic diversity among and within CIMMYT wheat landrace accessions investigated with SSRs and implications for plant genetic resources management. Crop Sci 45:653–661CrossRefGoogle Scholar
  8. Ercan S, Ertugrul F, Aydın Y, Senturk-Akfırat F, Hasancebi S, Cetin L, Akan K, Mert Z, Bolat N, Cakmak M, Altınkut-Uncuoglu A (2010) An EST-SSR marker linked with yellow rust resistance in wheat (Triticum aestivum L.). Biol Plantarum 54:691–696CrossRefGoogle Scholar
  9. Fufa H, Baenziger PS, Beecher BS, Dweikat I, Graybosch RA, Eskridge KM (2005) Comparison of phenotypic and molecular marker-based classifications of hard red winter wheat cultivars. Euphytica 145:133–146CrossRefGoogle Scholar
  10. Gökgöl M (1939) Turkish wheats. Yeşilköy Seed Breeding Institute Publications 2(14). Tan Press, Istanbul (in Turkish)Google Scholar
  11. Graner A, Ludwig WF, Melchinger AE (1994) Relationship among European barley germplasm, II: comparison of RFLP and pedigree data. Crop Sci 34:1199–1205CrossRefGoogle Scholar
  12. Hammer K (2000) Microsatellite markers: a new tool for distinguishing diploid wheat species. Genet Resour Crop Evol 47:497–505CrossRefGoogle Scholar
  13. Hao C, Wang L, Zhang X, You G, Dong Y, Jia J, Liu X, Shang X, Liu S, Cao Y (2006) Genetic diversity in Chinese modern wheat varieties revealed by microsatellite markers. Sci China, Ser C Life Sci 49:218–226CrossRefGoogle Scholar
  14. Harlan JR (1971) Agricultural origins: centers and noncenters. Science 174:468–473PubMedCrossRefGoogle Scholar
  15. Huang XQ, Börner A, Röder MS, Ganal MW (2002) Assessing genetic diversity of wheat (Triticum aestivum L.) germplasm using microsatellite markers. Theor Appl Genet 105:699–707PubMedCrossRefGoogle Scholar
  16. Kovach WL (1999) MVSP: A multivariate statistical package for Windows, version 3.1. Kovach Computing Services, Pentraeth, p 133Google Scholar
  17. Landjeva S, Korzun V, Ganeva G (2006) Evaluation of genetic diversity among Bulgarian winter wheat (Triticum aestivum L.) varieties during the period 1925–2003 using microsatellites. Genet Res Crop Evol 53:1605–1614CrossRefGoogle Scholar
  18. Li YC, Fahima T, Peng JH, Röder MS, Kirzhner VM, Beiles A, Korol AB, Nevo E (2000) Edaphitic microsatellite DNA divergence in wild emmer wheat, Triticum dicoccoides, at a microsite: Tabigha, Israel. Theor Appl Genet 101:1029–1038CrossRefGoogle Scholar
  19. Liu ZH, Anderson JA, Hu J, Friesen TL, Rasmussen JB, Faris JD (2005) A wheat intervarietal genetic linkage map based on microsatellite and target region amplified polymorphism markers and its utility for detecting quantitative trait loci. Theor Appl Genet 111:782–794PubMedCrossRefGoogle Scholar
  20. Ma ZQ, Röder MS, Sorrells ME (1996) Frequencies and sequence characteristics of di-, tri-, and tetra-nucleotide microsatellites in wheat. Genome 39:123–130PubMedCrossRefGoogle Scholar
  21. Özkan H, Brandolini A, Schafer-Pregl R, Salamini F (2002) AFLP analysis of a collection of tetraploid wheats indicates the origin of emmer and hard wheat domestication in southeast Turkey. Mol Biol Evol 19:1797–1801PubMedCrossRefGoogle Scholar
  22. Plaschke J, Ganal MW, Röder MS (1995) Detection of genetic diversity in closely related bread wheat using microsatellite markers. Theor Appl Genet 91:1001–1007CrossRefGoogle Scholar
  23. Powell W, Morgante M, Andre C, Hanafey M, Vogel J, Tingey S, Rafalski A (1996) The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Mol Breed 2:225–238CrossRefGoogle Scholar
  24. Prasad M, Varshney RK, Roy JK, Balyan HS, Gupta PK (2000) The use of microsatellites for detecting DNA polymorphism, genotype identification and genetic diversity in wheat. Theor Appl Genet 100:584–592Google Scholar
  25. Röder MS, Korzun V, Wendehake K, Plaschke J, Tixier MH, Leroy P, Ganal MW (1998) A microsatellite map of wheat. Genetics 149:2007–2023Google Scholar
  26. Russell JR, Fuller JD, Macaulay M, Hatz BG, Jahoor A, Powell W, Waugh R (1997) Direct comparison of levels of genetic variation among barley accessions detected by RFLPs, AFLPs, SSRs and RAPDs. Theor Appl Genet 95:714–722CrossRefGoogle Scholar
  27. Saker M, Nagchtigall M, Kuehne TA (2005) Comparative assessment of DNA fingerprinting by RAPD, SSR and AFLP in genetic analysis of some barley genotypes. Egypt J Genet Cytol 34:81–97Google Scholar
  28. Salem KFM, El-Zanaty AM, Esmail RM (2008) Assessing wheat (Triticum aestivum L.) genetic diversity using morphological characters and microsatallite markers. World J Agric Sci 4:538–544Google Scholar
  29. Schuster I, Vieira ESN, da Silva GJ, Franco FA, Marchioro VS (2009) Genetic variability in Brazilian wheat cultivars assessed by microsatellite markers. Genet Molec Biol 32:557–563CrossRefGoogle Scholar
  30. Song W, Henry RJ (1995) Molecular analysis of the DNA polymorphism of wild barley (Hordeum spontaneum) germplasm using the polymerase chain reaction. Genet Resourc Crop Evol 42:273–280CrossRefGoogle Scholar
  31. Sorrells ME, Wilson WA (1997) Direct classification and selection of superior alleles for crop improvement. Crop Sci 37:691–697CrossRefGoogle Scholar
  32. Tams SH, Bauer E, Oettler G, Melchinger AE (2004) Genetic diversity in European winter triticale determined with SSR markers and coancestry coefficient. Theor Appl Genet 108:1385–1391PubMedCrossRefGoogle Scholar
  33. Vavilov NI (1950) The phytogeographic basis of plant breeding. In: The origin, variation, immunity and breeding of cultivated plants (Trans. K Starr Chester). Chronica Botanica, Waltham, MA, USAGoogle Scholar
  34. Weining S, Langridge P (1991) Identification and mapping of polymorphisms in cereals based on the polymerase chain reaction. Theor Appl Genet 82:209–216CrossRefGoogle Scholar
  35. You GX, Zhang XY, Wang LF (2004) An estimation of the minimum number of SSR loci needed to reveal genetic relationships in wheat varieties: information from 96 random samples with maximized genetic diversity. Mol Breed 14:397–406CrossRefGoogle Scholar
  36. Zhang XY, Li CW, Wang LF, Wang HM, You GX, Dong YS (2002) An estimation of the minimum number of SSR alleles needed to reveal genetic relationships in wheat varieties I: information from large-scale planted varieties and cornerstone breeding parents in Chinese wheat improvement and production. Theor Appl Genet 106:112–117PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.Department of Molecular Biology and GeneticsGebze Institute of TechnologyGebzeTurkey
  2. 2.Department of Bioengineering, Faculty of EngineeringMarmara UniversityGoztepeTurkey

Personalised recommendations