Biochemical Genetics

, Volume 51, Issue 3–4, pp 175–188 | Cite as

MicroRNAs as Markers for Neurally Committed CD133+/CD34+ Stem Cells Derived from Human Umbilical Cord Blood

  • Maryam Hafizi
  • Amir Atashi
  • Behnaz Bakhshandeh
  • Mahboubeh Kabiri
  • Samad Nadri
  • Reza Haji Hosseini
  • Masoud Soleimani


Neural differentiation of the CD133+/CD34+ subpopulation of human umbilical cord blood stem cells was investigated, and neuro-miR (mir-9 and mir-124) expression was examined. An efficient induction protocol for neural differentiation of hematopoietic stem cells together with the exclusion of retinoic acid in this process was also studied. Transcription of some neural markers such as microtubule-associated protein-2, beta-tubulin III, and neuron-specific enolase was evaluated by real-time PCR, immunocytochemistry, and western blotting. Increased expression of neural indicators in the treated cells confirmed the appropriate neural differentiation, which supported the high efficiency of our defined neuronal induction protocol. Verified high expression of neuro-miRNAs along with neuronal specific proteins not only strengthens the regulatory role of miRNAs in determining stem cell fate but also introduces these miRNAs as novel indicators of neural differentiation. These data highlight the prominent therapeutic potential of hematopoietic stem cells for use in cell therapy of neurodegenerative diseases.


Hematopoietic stem cells MicroRNAs Neural differentiation CD133+/CD34+ 



This article was financially supported by the Stem Cell Technology Research Center.


  1. Bakhshandeh B, Hafizi M, Ghaemi N, Soleimani M (2012a) Down-regulation of miRNA-221 triggers osteogenic differentiation in human stem cells. Biotechnol Lett 34(8):1579–1587PubMedCrossRefGoogle Scholar
  2. Bakhshandeh B, Soleimani M, Hafizi M, Ghaemi N (2012b) A comparative study on nonviral genetic modifications in cord blood and bone marrow mesenchymal stem cells. Cytotechnology 64(5):523–540PubMedCrossRefGoogle Scholar
  3. Bakhshandeh B, Soleimani M, Hafizi M, Paylakhi SH, Ghaemi N (2012c) MicroRNA signature associated with osteogenic lineage commitment. Mol Biol Rep 39:7569–7581PubMedCrossRefGoogle Scholar
  4. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297PubMedCrossRefGoogle Scholar
  5. Brett JO, Renault VM, Rafalski VA, Webb AE, Brunet A (2011) The microRNA cluster miR-106b~25 regulates adult neural stem/progenitor cell proliferation and neuronal differentiation. Aging (Albany NY) 3:108–124Google Scholar
  6. Calin GA, Liu CG, Sevignani C, Ferracin M, Felli N, Dumitru CD, Shimizu M, Cimmino A, Zupo S, Dono M, Dell’Aquila ML, Alder H, Rassenti L, Kipps TJ, Bullrich F, Negrini M, Croce CM (2004) MicroRNA profiling reveals distinct signatures in B cell chronic lymphocytic leukemias. Proc Natl Acad Sci USA 101:11755–11760PubMedCrossRefGoogle Scholar
  7. Cohen Y, Nagler A (2004) Umbilical cord blood transplantation: How, when and for whom? Blood Rev 18:167–179PubMedCrossRefGoogle Scholar
  8. Culbreth ME, Harrill JA, Freudenrich TM, Mundy WR, Shafer TJ (2012) Comparison of chemical-induced changes in proliferation and apoptosis in human and mouse neuroprogenitor cells. Neurotoxicology. doi: 10.1016/j.neuro.2012.05.012 PubMedGoogle Scholar
  9. El-Badri NS, Hakki A, Saporta S, Liang X, Madhusodanan S, Willing AE, Sanberg CD, Sanberg PR (2006) Cord blood mesenchymal stem cells: Potential use in neurological disorders. Stem Cells Dev 15:497–506PubMedCrossRefGoogle Scholar
  10. Erceg S, Ronaghi M, Zipancic I, Lainez S, Rosello MG, Xiong C, Moreno-Manzano V, Rodriguez-Jimenez FJ, Planells R, Alvarez-Dolado M, Bhattacharya SS, Stojkovic M (2010) Efficient differentiation of human embryonic stem cells into functional cerebellar-like cells. Stem Cells Dev 19:1745–1756PubMedCrossRefGoogle Scholar
  11. Fan C, Zhang Q, Tang F, Han Z, Wang G, Han Z (2005) Human umbilical cord blood cells express neurotrophic factors. Neurosci Lett 380:322–325PubMedCrossRefGoogle Scholar
  12. Florek M, Haase M, Marzesco AM, Freund D, Ehninger G, Huttner WB, Corbeil D (2005) Prominin-1/CD133, a neural and hematopoietic stem cell marker, is expressed in adult human differentiated cells and certain types of kidney cancer. Cell Tissue Res 319:15–26PubMedCrossRefGoogle Scholar
  13. Gage F (2000) Mammalian neural stem cells. Science 287:1433–1438PubMedCrossRefGoogle Scholar
  14. Habich A, Jurga M, Markiewicz I, Lukomska B, Bany-Laszewicz U, Domanska-Janik K (2006) Early appearance of stem/progenitor cells with neural-like characteristics in human cord blood mononuclear fraction cultured in vitro. Exp Hematol 34:914–925PubMedCrossRefGoogle Scholar
  15. Hermann A, Liebau S, Gastl R, Fickert S, Habisch HJ, Fiedler J, Schwarz J, Brenner R, Storch A (2006) Comparative analysis of neuroectodermal differentiation capacity of human bone marrow stromal cells using various conversion protocols. J Neurosci Res 83:1502–1514PubMedCrossRefGoogle Scholar
  16. Hobert O (2004) Common logic of transcription factor and microRNA action. Trends Biochem Sci 29:462–468PubMedCrossRefGoogle Scholar
  17. Horner P, Power A, Kempermann G, Kuhn H, Palmer T, Winkler J, Thal L, Gage F (2000) Proliferation and differentiation of progenitor cells throughout the intact adult rat spinal cord. J Neurosci 20:2218–2228PubMedGoogle Scholar
  18. Jang Y, Park J, Lee M, Yoon B, Yang Y, Yang S, Kim S (2004) Retinoic acid-mediated induction of neurons and glial cells from human umbilical cord-derived hematopoietic stem cells. J Neurosci Res 75:573–584PubMedCrossRefGoogle Scholar
  19. Kapsimali M, Kloosterman WP, de Bruijn E, Rosa F, Plasterk RH, Wilson SW (2007) MicroRNAs show a wide diversity of expression profiles in the developing and mature central nervous system. Genome Biol 8:R173PubMedCrossRefGoogle Scholar
  20. Koh LP (2004) Unrelated umbilical cord blood transplantation in children and adults. Ann Acad Med Singap 33:559–569PubMedGoogle Scholar
  21. Kole AJ, Swahari V, Hammond SM, Deshmukh M (2011) miR-29b is activated during neuronal maturation and targets BH3-only genes to restrict apoptosis. Genes Dev 25:125–130PubMedCrossRefGoogle Scholar
  22. Lee OK, Kuo TK, Chen WM, Lee KD, Hsieh SL, Chen TH (2004) Isolation of multipotent mesenchymal stem cells from umbilical cord blood. Blood 103:1669–1675PubMedCrossRefGoogle Scholar
  23. Liu K, Liu Y, Mo W, Qiu R, Wang X, Wu JY, He R (2011) MiR-124 regulates early neurogenesis in the optic vesicle and forebrain, targeting NeuroD1. Nucleic Acids Res 39:2869–2879PubMedCrossRefGoogle Scholar
  24. Lunn JS, Sakowski SA, Hur J, Feldman EL (2011) Stem cell technology for neurodegenerative diseases. Ann Neurol 70:353–361PubMedCrossRefGoogle Scholar
  25. Maiorano NA, Mallamaci A (2010) The pro-differentiating role of miR-124: indicating the road to become a neuron. RNA Biol 7:528–533PubMedCrossRefGoogle Scholar
  26. Mareschia K, Novarab M, Rustichellia D, Ferreroa I, Guidob D, Carboneb E, Medicoc E, Madona E, Vercellid A, Fagioli F (2006) Neural differentiation of human mesenchymal stem cells: evidence for expression of neural markers and eag K+ channel types. Exp Hematol 34:1563–1572CrossRefGoogle Scholar
  27. Moise KJ Jr (2005) Umbilical cord stem cells. Obstet Gynecol 106:1393–1407PubMedCrossRefGoogle Scholar
  28. Nadri S, Soleimani M, Mobarra Z, Amini S (2008) Expression of dopamine-associated genes on conjunctiva stromal-derived human mesenchymal stem cells. Biochem Biophys Res Commun 377:423–428PubMedCrossRefGoogle Scholar
  29. Nilsen TW (2007) Mechanisms of microRNA-mediated gene regulation in animal cells. Trends Genet 23:243–249PubMedCrossRefGoogle Scholar
  30. Padovan C, Jahn K, Birnbaum T, Reich P, Sostak P, Strupp M, Straube A (2003) Expression of neuronal markers in differentiated marrow stromal cells and CD133+ stem-like cells. Cell Transplant 12:839–848PubMedGoogle Scholar
  31. Pasquinelli AE (2012) MicroRNAs and their targets: recognition, regulation and an emerging reciprocal relationship. Nat Rev Genet 13:271–282PubMedGoogle Scholar
  32. Reddi AS, Kuppasani K, Ende N (2010) Human umbilical cord blood as an emerging stem cell therapy for diabetes mellitus. Curr Stem Cell Res Ther 5:356–361PubMedCrossRefGoogle Scholar
  33. Shi Y, Sun G, Zhao C, Stewart R (2008) Neural stem cell self-renewal. Crit Rev Oncol Hematol 65:43–53PubMedCrossRefGoogle Scholar
  34. Shibata M, Nakao H, Kiyonari H, Abe T, Aizawa S (2011) MicroRNA-9 regulates neurogenesis in mouse telencephalon by targeting multiple transcription factors. J Neurosci 31:3407–3422PubMedCrossRefGoogle Scholar
  35. Shmelkov SV, St Clair R, Lyden D, Rafii S (2005) AC133/CD133/Prominin-1. Int J Biochem Cell Biol 37:715–719PubMedCrossRefGoogle Scholar
  36. Smirnova L, Gräfe A, Seiler A, Schumacher S, Nitsch R, Wulczyn F (2005) Regulation of miRNA expression during neural cell specification. Eur J Neurosci 21:1469–1477PubMedCrossRefGoogle Scholar
  37. Specht H, Esdar C, Oehrlein S, Maelicke A (1998) Retinoic acid induces apoptosis-associated neural differentiation of a murine teratocarcinoma cell line. J Neurochem 70:47–58PubMedGoogle Scholar
  38. Titomanlio L, Kavelaars A, Dalous J, Mani S, El Ghouzzi V, Heijnen C, Baud O, Gressens P (2011) Stem cell therapy for neonatal brain injury: perspectives and challenges. Ann Neurol 70:698–712PubMedCrossRefGoogle Scholar
  39. Trompeter HI, Abbad H, Iwaniuk KM, Hafner M, Renwick N, Tuschl T, Schira J, Muller HW, Wernet P (2011) MicroRNAs MiR-17, MiR-20a, and MiR-106b act in concert to modulate E2F activity on cell cycle arrest during neuronal lineage differentiation of USSC. PLoS ONE 6:e16138PubMedCrossRefGoogle Scholar
  40. Voigt A, Zintl F (2003) Effects of retinoic acid on proliferation, apoptosis, cytotoxicity, migration, and invasion of neuroblastoma cells. Med Pediatric Oncol 40:205–213CrossRefGoogle Scholar
  41. Yoo AS, Sun AX, Li L, Shcheglovitov A, Portmann T, Li Y, Lee-Messer C, Dolmetsch RE, Tsien RW, Crabtree GR (2011) MicroRNA-mediated conversion of human fibroblasts to neurons. Nature 476:228–231PubMedCrossRefGoogle Scholar
  42. Zangiacomi V, Balon N, Maddens S, Lapierre V, Tiberghien P, Schlichter R, Versaux-Botteri C, Deschaseaux F (2008) Cord blood-derived neurons are originated from CD133+/CD34 stem/progenitor cells in a cell-to-cell contact dependent manner. Stem Cells Dev 17:1005–1016PubMedCrossRefGoogle Scholar
  43. Zhou H, Chang S, Rao M (2012) Human cord blood applications in cell therapy: looking back and look ahead. Expert Opin Biol Ther 12:1059–1066PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Maryam Hafizi
    • 1
    • 3
  • Amir Atashi
    • 2
  • Behnaz Bakhshandeh
    • 4
  • Mahboubeh Kabiri
    • 1
    • 4
  • Samad Nadri
    • 1
    • 5
  • Reza Haji Hosseini
    • 3
  • Masoud Soleimani
    • 2
  1. 1.Stem Cell Biology DepartmentStem Cell Technology Research CenterTehranIran
  2. 2.Hematology Department, Faculty of Medical SciencesTarbiat Modares UniversityTehranIran
  3. 3.Biology DepartmentPayame Noor UniversityTehranIran
  4. 4.Department of Biotechnology, University College of ScienceUniversity of TehranTehranIran
  5. 5.Faculty of MedicineShahid Beheshti University of Medical SciencesTehranIran

Personalised recommendations